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Abstract

We build a Shannon orbit equivalence between the universal odometer and a

variety of rank-one systems. This is done in a uni�ed manner, using what we call

�exible classes of rank-one transformations. Our main result is that every �exi-

ble class contains an element which is Shannon orbit equivalent to the universal

odometer. Since a typical example of �exible class is tT u when T is an odometer,

our work generalizes a recent result by Kerr and Li, stating that every odometer

is Shannon orbit equivalent to the universal odometer.

When the �exible class is a singleton, the rank-one transformation given by

the main result is explicit. This applies to odometers and Chacon's map. We also

prove that strongly mixing systems, systems with a given eigenvalue, or irrational

rotations whose angle belongs to any �xed nonempty open subset of the real line

form �exible classes. In particular, strong mixing, rationality or irrationality of

the eigenvalues are not preserved under Shannon orbit equivalence.
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1 Introduction

At the level of ergodic probability measure-preserving bijections, quantitative orbit
equivalence aims at bridging the gap between the well-studied but very complicated
relation of conjugacy, and the trivial relation of orbit equivalence, which is equality of
orbits up to conjugacy.

To be more precise, given two ergodic probability measure-preserving bijections S
and T on a standard atomless probability space pX,A, µq, if S and some system Ψ�1TΨ
conjugate to T have the same orbits, then S and T are said to be orbit equivalent and
the probability measure-preserving bijection Ψ: X Ñ X is called an orbit equivalence
between T and S. Dye's theorem [Dye59] states that, if S and T are ergodic, then they
are orbit equivalent.

To get an interesting theory, let us de�ne the cocycles associated to Ψ, these are
the integer-valued functions cS and cT de�ned by Sx � Ψ�1T cSpxqΨpxq and Tx �
ΨScT pxqΨ�1pxq. Shannon orbit equivalence requires that there exists an orbit equiva-
lence whose cocycles are Shannon, meaning that the partitions associated to cS and cT
are both of �nite entropy. For φ-integrable orbit equivalence we ask that both integrals³
X
φp|cSpxq|qdµpxq and

³
X
φp|cT pxq|qdµpxq are �nite. In the particular case of a linear

map φ, φ-integrable orbit equivalence exactly requires the integrability of the cocycles,
and is simply called integrable orbit equivalence.

Belinskaya's theorem [Bel69] implies that integrable orbit equivalence is exactly �ip-
conjugacy (S and T are �ip-conjugate if S is conjugate to T or T�1). In fact it only
requires that one of the two cocycles is integrable. Carderi, Joseph, Le Maître and
Tessera [CJLMT23] proved that this result is optimal, meaning that φ-integrable orbit
equivalence never implies �ip-conjugacy for a sublinear map φ. Moreover, φ-integrable
orbit equivalence implies Shannon orbit equivalence when φ is asymptotically greater
than log. An impressive result of Kerr and Li [KL24] guarantees that these relations
are not trivial: entropy is preserved under Shannon orbit equivalence (and this is the
only invariant that we know of). As a consequence, two transformations with di�erent
entropies can neither be Shannon orbit equivalent nor φ-integrably orbit equivalent for
any φ greater than log.

Historically, the question of preservation of entropy in quantitative orbit equivalence
was asked in the more general setting of group actions. We do not give any de�nition
in this setting, as the paper is only about probability measure-preserving bijections
S, which can be seen as Z-actions via pn, xq P Z �X ÞÑ Snx. Austin [Aus16] showed
that integrable orbit equivalence between actions of in�nite �nitely generated amenable
groups preserves entropy. Kerr and Li [KL21, KL24] then generalized this result, re-
placing integrable orbit equivalence by Shannon orbit equivalence, and going beyond
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Figure 1: Here is a schematic view of the interplay between the relations on ergodic
bijections we have seen so far.

the amenable case using so�c entropy.

The universal odometer and a theorem of Kerr and Li [KL24]. In [CJLMT23],
the statement about φ-integrable orbit equivalence in the sublinear case is the following.
This gives a result on Shannon orbit equivalence since this is implied by φ-integrable
orbit equivalence for φ greater than log.

Theorem (Carderi, Joseph, Le Maître, Tessera [CJLMT23]). Let φ : R� Ñ R� be a
sublinear function. Let S be an ergodic probability measure-preserving transformation
and assume that Sn is ergodic for some n ¥ 2. Then there is another ergodic probability
measure-preserving transformation T such that S and T are φ-integrably orbit equivalent
but not �ip-conjugate.

Corollary (Carderi, Joseph, Le Maître, Tessera [CJLMT23]). Let S be an ergodic
probability measure-preserving transformation and assume that Sn is ergodic for some
n ¥ 2. Then there is another ergodic probability measure-preserving transformation T
such that S and T are Shannon orbit equivalent but not �ip-conjugate.

The proof is constructive and the resulting transformation T is built so that T n

is not ergodic. It is natural to wonder whether this statement holds for systems T
without ergodic non-trivial powers. A well-known example of such a system is the
universal odometer.

Question 1.1. Which systems are Shannon orbit equivalent to the universal odometer?

A �rst answer is given by Kerr and Li.

Theorem (Kerr, Li [KL24]). Every odometer is Shannon orbit equivalent to the uni-
versal odometer.

Odometers are exactly probability measure-preserving bijections admitting a nested
sequence of partitions of the space, each of them being a Rokhlin tower, and increasing
to the σ-algebraA, see Figure 2 (we refer the reader to the end of Section 3.1 for concrete
examples with adding machines). Kerr and Li use this combinatorial speci�city of these
bijections to build an orbit equivalence between them.
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R1 −→ R2

R2 −→ R3

R1 R2

R2 R3

Figure 2: In this example, pRnq denotes the nested sequence of Rokhlin towers de�ning
an odometer. Dividing R1 in two sub-towers and stacking them, this gives the next
tower R2. From R2, R3 is de�ned by dividing in three sub-towers and stacking them.

Rank-one systems. The aim of the paper is to extend Kerr and Li's result to rank-
one bijections. These are more general transformations admitting a nested sequence
of Rokhlin towers increasing to the σ-algebra A but the towers do not necessarily
partition the space. This means that from a tower to the next one, we need to add
some parts of the space which are not covered by the previous tower, called spacers,
so that the measure of the subset covered by the n-th tower tends to 1 as n goes to
�8. As illustrated in Figure 3, to get the next tower, the current one is subdivided
in sub-towers which are stacked with optional spacers between them. The number
of sub-towers is called the cutting parameter and the number of consecutive spacers
between these sub-towers are the spacing parameters (see De�nition 3.2). For example,
an odometer admits a cutting-and-stacking construction with spacing parameters equal
to zero at each step.

T

T

T

T

Rn Rn+1

Figure 3: In this example, there are four spacers and the cutting parameter is three.
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Rank-one systems all have entropy zero. They include systems with discrete spec-
trum ([Jun76]), also called compact systems. Such systems are not weakly mixing and
are completely classi�ed up to conjugacy by their point spectrum ([HVN42]). Examples
include odometers and irrational rotations.

The family of rank-one systems is much richer than its subclass of discrete spectrum
systems. Indeed, the latter are not weakly mixing whereas there exist strongly mix-
ing systems of rank one, and also rank-one systems which are weakly mixing but not
strongly mixing (Chacon's map was the �rst example of such a system and opened the
study of rank-one systems). Rank-one systems can have irrational eigenvalues (i.e. of
the form exp p2iπθq with irrational numbers θ), it is the case of irrational rotations,
whereas odometers only have rational eigenvalues. The reader may refer to the com-
plete survey of Ferenczi [Fer97] about rank-one systems and more generally systems of
�nite rank.

The combinatorial structure of a general rank-one system does not di�er too much
from the structure of an odometer but the systems can have completely di�erent prop-
erties, thus this class may extend the result of Kerr and Li and provide interesting
�exibility results about Shannon orbit equivalence.

A �rst extension of Kerr and Li's theorem. The construction of an orbit equiv-
alence between the universal odometer S and any rank-one system T is a natural gen-
eralization of Kerr and Li's method for the universal odometer and any odometer (see
Remark 5.18). The di�culty is to quantify the cocycles.

At the beginning of our work, we �rst proved that the Shannon orbit equivalence
established by Kerr and Li in [KL24] is actually a φ-integrable orbit equivalence for any
φ : R� Ñ R� with φptq � opt1{3q. We then generalized this to rank-one systems called
BSP, for "bounded-spacing-parameter", see De�nition 3.5. This notion of BSP systems
was already introduced by Gao and Ziegler in [GZ19], using the symbolic de�nition of
rank-one systems (in this paper we will only consider the cutting-and-stacking de�nition
of rank-one systems, which is often more appropriate for constructions in a measure-
theoretic setting).

Theorem A. Every BSP rank-one system is φ-integrably orbit equivalent to the uni-
versal odometer for any φ : R� Ñ R� satisfying φptq �

tÑ�8
o
�
t1{3
�
.

Therefore φ-integrable orbit equivalence, for a φ as in the above theorem, and
Shannon orbit equivalence do not preserve weak mixing since Chacon's map is a BSP
rank-one system.

Now the goal is to get a result for systems of rank one outside the class of BSP
systems. For this purpose, we �nd a more general framework with the notion of �exible
classes, and a general statement (Theorem B) implying Theorem A and other �exibility
results (Theorems C, E, F). Theorem D is a re�nement of Theorem C.

A modi�ed strategy. We �rst have to understand why the quanti�cation of the
cocycles is more di�cult to determine for general rank-one systems than for odometers
(or even for BSP systems in Theorem A). In [KL24], the quanti�cation of the cocycles
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relies on a series whose terms vanish to zero as the cutting parameters get larger and
larger. The key is then to get quickly increasing cutting parameters for the series to
converge. In order to do so, it su�ces to skip steps in the cutting-and-stacking process,
i.e. from the n-th Rokhlin tower, we can directly build the pn� kq-th Rokhlin for k so
big that the new cutting parameter is large enough. In other words, we can recursively
choose the cutting parameters so that they increase quickly enough.

When the rank-one system is not an odometer, we need an asymptotic control on
the spacing parameters (recall that they are zero for an odometer) for the cocycles to be
well quanti�ed. When skipping steps in the cutting-and-stacking method, the spacing
parameters may increase too quickly, preventing us from quantifying the cocycles. As
we will see in Lemma 3.6, we do not have this problem with BSP rank-one systems.

When the rank-one system is not BSP, skipping steps in the cutting-and-stacking
construction is not relevant as it may improperly change the spacing parameters. In
Section 5.3 (see Lemma 5.9), we will notice that the construction of Kerr and Li enables
us to build the universal odometer S while we are building the rank-one system T ,
focusing only on the combinatorics behind the systems, whereas for Kerr and Li T and
its cutting-and-stacking settings are �xed and S is built from these data. This new
strategy will enable us to have a result for systems of rank one outside the class of BSP
systems, with the notion of �exible class.

Flexible classes. A �exible class (see De�nition 3.7) is basically a class of rank-
one systems satisfying a common property (e.g. the set of strongly mixing rank-one
systems), with the following two requirements. We �rst ask for a su�cient condition,
given by a set FC, on the �rst n cutting and spacing parameters (for all integers n ¥ 0)
for the underlying rank-one system to be in this class. Secondly, given a sequence of n
cutting and spacing parameters in FC (they will be the �rst n parameters of a cutting-
and-stacking construction), we require that it can be completed in a sequence of n� 1
parameters in FC, with in�nitely many choices for the pn � 1q-th cutting parameters,
and with the appropriate asymptotic control on the pn� 1q-th spacing parameters.

The idea is to inductively choose the parameters so that the cutting parameters
increase fastly enough, with the appropriate asymptotics on the spacing parameters,
and the underlying rank-one system has the desired property, namely the system is in
the �exible class that we consider.

The general statement on �exible classes is the following.

Theorem B (see Theorem 3.9). Let φ : R� Ñ R� be a map satisfying φptq �
tÑ�8

o
�
t1{3
�
. If C is a �exible class, then there exists T in C which is φ-integrably orbit

equivalent to the universal odometer.

A very interesting phenomenon is when a rank-one system T is �exible, meaning
that tT u is a �exible class. This �rst means that given the parameters of a cutting-and-
stacking construction of T , it is possible to change the pn � 1q-th parameters so that
they have the desired asymptotic control, and to inductively do so for every n so that
the underlying rank-one system is again T . We do not know if every rank-one system
is �exible. Secondly, Theorem B is an existence result and when a �exible class is a
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singleton tT u, this statement provides a concrete example of rank-one system which is
φ-integrably orbit equivalent to the universal odometer.

The following proposition gives examples of �exible classes.

Proposition 1.2 (see Proposition 3.8). 1. Every BSP rank-one system is �exible.

2. For every nonempty open subset V of R, the set tRθ | θ P V XpRzQqu is a �exible
class.

3. For every irrational number θ, the class of rank-one systems which have e2iπθ as
an eigenvalue is �exible.

4. The class of strongly mixing rank-one systems is �exible.

Proving that a BSP system is �exible is not di�cult and we rely on the fact that
bounded spacing parameters already have the desired asymptotics even though we skip
steps in the cutting-and-stacking process for the cutting parameters to increase quickly
enough (see Section 4.1). We use a construction by Drillick, Espinosa-Dominguez,
Jones-Baro, Leng, Mandelshtam and Silva [DEJ�23] to prove Proposition 1.2 for irra-
tional rotations (see Section 4.2). We also consider a construction by Danilenko and
Vieprik [DV23] for the rank-one systems with a given eigenvalue (see Section 4.3). Fi-
nally, Ornstein [Orn72] gives the �rst example of strongly mixing rank-one systems
and the fact that these systems form a �exible class follows from his construction (see
Section 4.4).

Combined with Proposition 1.2, Theorem B provides four �exibility results. The
�rst one is Theorem A stated above, this is a generalization of Kerr and Li's theorem.
The second one is another result with almost explicit examples of systems which are
φ-integrably orbit equivalent to the universal odometer.

Theorem C. Let φ : R� Ñ R� be a map satisfying φptq �
tÑ�8

o
�
t1{3
�
. The set of

irrational numbers θ whose associated irrational rotation is φ-integrably orbit equivalent
to the universal odometer is dense in R.

The point spectrum of Rθ is exactly the circle subgroup generated by exp p2iπθq
and the eigenvalues of the universal odometer are rational, so Theorem C implies that
there exist two Shannon orbit equivalent systems (more speci�cally φ-integrably orbit
equivalent with φptq �

tÑ�8
o
�
t1{3
�
), with non-trivial point spectrums and such that 1 is

the only common eigenvalue.
The way we prove Theorem B will enable us to get the following re�nement, its

proof is written at the end of the paper.

Theorem D. For every map φ : R� Ñ R� satisfying φptq �
tÑ�8

o
�
t1{3
�
, and for every

nonempty open subset V of R, the set of irrational numbers θ P V whose associated irra-
tional rotation is φ-integrably orbit equivalent to the universal odometer is uncountable.

Question 1.3. Let us consider the set of irrational numbers θ whose associated irra-
tional rotation is φ-integrably orbit equivalent to the universal odometer. Is this set
conull with respect to the Lebesgue measure? equal to the set of irrational numbers?
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Finally we get the following corollaries, providing implicit examples.

Theorem E. For every map φ : R� Ñ R� satisfying φptq �
tÑ�8

o
�
t1{3
�
, and for every

irrational number θ, there exists a rank-one system which has e2iπθ as an eigenvalue
and which is φ-integrably orbit equivalent to the universal odometer.

Theorem F. For every map φ : R� Ñ R� satisfying φptq �
tÑ�8

o
�
t1{3
�
, there exists a

strongly mixing rank-one system which is φ-integrably orbit equivalent to the universal
odometer.

As exp p2iπθq is an eigenvalue of the irrational rotation of angle θ, and as we do not
know if Theorem C holds for every irrational number θ, Theorem E then completes this
statement with a weaker result for the remaining θ.

Theorem F implies that φ-integrable orbit equivalence, with φptq �
tÑ�8

o
�
t1{3
�
, and

Shannon orbit equivalence do not preserve strong mixing. This is also a consequence
of the result from [CJLMT23]. Indeed if S is strongly mixing, then all its non-trivial
powers are ergodic and the statements give some T with a non-trivial power which is
not ergodic, so T is not strongly mixing. Here Theorem F gives an example starting
from a very non-strongly mixing system S (the universal odometer). Finally, note that
strongly mixing systems are not BSP. This is a consequence of Theorem 1.3 in [GZ19]:
BSP rank-one systems are not topologically mixing, therefore they are not measure-
theoretically strongly mixing.

Further comments. As they both preserve entropy, we may wonder whether there
is a connection between Shannon orbit equivalence (or more generally φ-integrable
orbit equivalence for φ greater than log) and even Kakutani equivalence. Two ergodic
probability measure-preserving bijections S and T , respectively acting on pX,µq and
pY, νq, are evenly Kakutani equivalent if there exist measurable subsets A � X and
B � Y with equal measure, i.e. µpAq � νpBq, such that the induced maps SA and
TB are conjugate. Even Kakutani equivalence is an equivalence relation, contrarily
to Shannon orbit equivalence and φ-integrable orbit equivalence a priori (except for
linear maps φ, by Belinskaya's theorem). The theory of Ornstein, Rudolph and Weiss
[ORW82] gives a complete classi�cation up to even Kakutani equivalence among loosely
Bernoulli (LB) systems and entropy is a complete invariant. Moreover the class of LB
systems is closed by even Kakutani equivalence, meaning that if S is LB and equivalent
to T , then T is also LB.

Rank-one systems are zero-entropy and LB, and by Theorems A, C, E and F, some
of them are Shannon orbit equivalent to the universal odometer.

Question 1.4. Does even Kakutani equivalence imply Shannon orbit equivalence or
φ-integrable orbit equivalence for some φ?

In a forthcoming paper we will provide a new construction of orbit equivalence
in order to prove that the converse is false: for every ε ¡ 0, there exists a non-LB
system which is px ÞÑ x

1
2
�εq-integrably orbit equivalent to the dyadic odometer. So

px ÞÑ x
1
2
�εq-integrable orbit equivalence and Shannon orbit equivalence do not imply

even Kakutani equivalence.
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Outline of the paper. After a few preliminaries in Section 2, rank-one systems
are de�ned in Section 3 using the cutting-and-stacking method. We also de�ne the
central notion of �exible classes of rank-one transformations. In Section 4, we prove
Proposition 1.2 (Proposition 3.8 in Section 3), i.e. we show that the classes mentionned
in Theorem B (Theorem 3.9 in Section 3) are �exible. It remains to show that every
�exible class admits an element which is φ-integrably orbit equivalent to the universal
odometer (Theorem 3.9). In Section 5, we will describe the construction of Kerr and
Li, generalized to rank-one systems, and establish that this is an orbit equivalence with
some important properties preparing for the proof of Theorem 3.9. Theorems A, C, E
and F directly follows from Proposition 3.8 and Theorem 3.9. We prove Theorem D at
the end of the paper.
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thank Mathieu Da Silva, Victor Dubach and Fabien Hoareau for their useful comments
on the paper. Finally, I am very grateful to the referee for their careful reading, for
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Proposition 1.2.

2 Preliminaries

Basics of ergodic theory. The probability space pX,A, µq is assumed to be standard
and atomless. Such a space is isomorphic to pr0, 1s,Bpr0, 1sq,Lebq, i.e. there exists a
bimeasurable bijection Ψ: X Ñ r0, 1s (de�ned almost everywhere) such that Ψ�µ �
Leb, where Ψ�µ is de�ned by Ψ�µpAq � µpΨ�1pAqq for every measurable set A. We
consider maps T : X Ñ X acting on this space and which are bijective, bimeasurable
and probability measure-preserving (p.m.p.), meaning that µpT�1pAqq � µpAq
for all measurable sets A � X, and the set of these transformations is denoted by
AutpX,A, µq, or simply AutpX,µq, two such maps being identi�ed if they coincide
on a measurable set of full measure. In this paper, elements of AutpX,µq are called
transformations or (dynamical) systems.

A measurable set A � X is T -invariant if µpT�1pAq∆Aq � 0, where ∆ denotes the
symmetric di�erence. A transformation T P AutpX,µq is said to be ergodic if every
T -invariant set is of measure 0 or 1. If T is ergodic, then T is aperiodic, i.e. T npxq �� x
for almost every x P X and for every n P Zzt0u, or equivalently the T -orbit of x,
denoted by OrbT pxq� tT npxq | n P Zu, is in�nite for almost every x P X.

T is weakly mixing if

1

n

ņ

k�0

��µpAX T�npBqq � µpAqµpBq
�� Ñ
nÑ�8

0

for every measurable sets A,B. T is strongly mixing if��µpAX T�npBqq � µpAqµpBq
�� Ñ
nÑ�8

0
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for every measurable sets A,B. It is not di�cult to prove that strong mixing implies
weak mixing and that the latter implies ergodicity.

The notions of weak mixing and ergodicity can be translated in terms of eigen-
values. Denoting by L2pX,A, µq the space of complex-valued and square-integrable
functions de�ned on X, a complex number λ is an eigenvalue of T if there ex-
ists f P L2pX,A, µqzt0u such that f � T � λf almost everywhere (f is then called
an eigenfunction). An eigenvalue λ is automatically an element of the unit circle
T � tz P C | |z| � 1u. The point spectrum of T is then the set of all its eigen-
values. Notice that λ � 1 is always an eigenvalue since the constant functions are in
its eigenspace. Finally T is ergodic if and only if the constant functions are the only
eigenfunctions with eigenvalue one, in other words the eigenspace of λ � 1 is the line of
constant functions (we say that it is a simple eigenvalue). If T is ergodic, it is weakly
mixing if and only if the only eigenvalue of T is 1. For a complete survey on spectral
theory for dynamical systems, the reader may refer to [VO16].

All the properties that we have introduced are preserved under conjugacy. Two
transformations S P AutpX,µq and T P AutpY, νq are conjugate if there exists a
bimeasurable bijection Ψ: X Ñ Y such that Ψ�µ � ν and Ψ � S � T �Ψ almost every-
where. Some classes of transformations have been classi�ed up to conjugacy, the two
examples to keep in mind are the following. By Ornstein [Orn70], entropy is a total
invariant of conjugacy among Bernoulli shifts, and Ornstein and Weiss [OW87] general-
ized this result for Bernoulli shifts of amenable groups. For more details about entropy,
see [Dow11] for non necessarily invertible transformations T : X Ñ X, and [KL16] more
generally for actions of amenable groups. Finally Halmos and von Neumann [HVN42]
showed that two ergodic systems with discrete spectrums are conjugate if and only if
they have equal point spectrums (a system has discrete spectrum if the span of all its
eigenfunctions is dense in L2pX,A, µq).

Quantitative orbit equivalence. The conjugacy problem in full generality is very
complicated (see [FRW11]). We now give the formal de�nition of orbit equivalence,
which is a weakening of the conjugacy problem.

De�nition 2.1. Two aperiodic transformations S P AutpX,µq and T P AutpY, νq are
orbit equivalent if there exist a bimeasurable bijection Ψ: X Ñ Y satisfying Ψ�µ � ν,
such that OrbSpxq � OrbΨ�1TΨpxq for almost every x P X. The map Ψ is called an
orbit equivalence between S and T .

We can then de�ne the cocycles associated to this orbit equivalence. These are
measurable functions cS : X Ñ Z and cT : Y Ñ Z de�ned almost everywhere by

Sx � Ψ�1T cSpxqΨpxq and Ty � ΨScT pyqΨ�1pyq

(cSpxq and cT pyq are uniquely de�ned by aperiodicity).

Given a function φ : R� Ñ R�, a measurable function f : X Ñ Z is said to be
φ-integrable if »

X

φp|fpxq|qdµ   �8.
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For example integrability is exactly φ-integrability when φ is non-zero and linear. Then
a weaker quanti�cation on cocycles is the notion of φ-integrability for a sublinear map φ,
meaning that limtÑ�8 φptq{t � 0. Two transformations in AutpX,µq are said to be φ-
integrably orbit equivalent if there exists an orbit equivalence between them whose
associated cocycles are φ-integrable. Another form of quantitative orbit equivalence is
Shannon orbit equivalence. We say that a measurable function f : X Ñ Z is Shannon if
the associated partition tf�1pnq | n P Zu ofX has �nite entropy. Two transformations in
AutpX,µq are Shannon orbit equivalent if there exists an orbit equivalence between
them whose associated cocycles are Shannon.

3 Rank-one systems

3.1 The cutting-and-stacking method

Before the de�nition of a rank-one system (De�nition 3.2), and for the de�nition of
�exible classes (De�nition 3.7), we need to de�ne sequences of integers which will pro-
vide the combinatorial data of a rank-one system, namely the cutting and spacing
parameters.

De�nition 3.1. By a cutting and spacing parameter, we mean a tuple of the form

pq, pσ.,0, . . . , σ.,qqq

with an integer q ¥ 2 (the cutting parameter) and non-negative integers σ.,0, . . . , σ.,q
(the spacing parameters), and we denote by P the set of all cutting and spacing
parameters. We also de�ne the set of �nite sequences of cutting and spacing parameters:

P� �
¤
nPN

Pn.

Given a sequence of cutting and spacing parameters p � pqk, pσk,0, . . . , σk,qkqqk¥0 P PN

and an integer n ¥ 0, the tuple pqn, pσn,0, . . . , σn,qnqq in P is the n-th cutting and
spacing parameter of p, and the tuple pqk, pσk,0, . . . , σk,qkqq0¤k¤n is the projection
of p on Pn�1 (it gives the �rst n� 1 cutting and spacing parameters). From p, we also
de�ne three sequences:

� phnqn¥0 the height sequence of p, inductively de�ned by

"
h0 � 1,
hn�1 � qnhn � σn

,

hn is called the height of the n-th tower;

� pσnqn¥0, with σn �
°qn

i�0 σn,i (the number of new spacers at step n);

� pZnqn¥0, with Zn � max tσj,i | 0 ¤ j ¤ n, 0 ¤ i ¤ qju,

and it is also possible to consider the �nite sequences phkq0¤k¤n�1, pσkq0¤k¤n and
pZkq0¤k¤n associated to a �nite sequence of cutting and spacing parameters in Pn�1.
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The terminology "cutting", "spacing", "tower", "height", etc, is justi�ed by De�ni-
tion 3.2 and Figure 4. There are many de�nitions of rank-one systems (see [Fer97] for
a complete survey and various facts in this section). In this paper the goal is to use the
combinatorial structure given by the cutting-and-stacking method (see Figure 4).

De�nition 3.2. A transformation T P AutpX,µq is of rank one if there exist

1. a sequence of cutting and spacing parameters p � pqn, pσn,0, . . . , σn,qnqqn¥0 P PN

satisfying
�8̧

n�0

σn
hn�1

  �8, (F)

where phnq and pσnq are the sequences associated to p, as described in De�ni-
tion 3.1;

2. measurable subsets of X, denoted by Bn (for every n ¥ 0), Bn,i (for every n ¥ 0
and 0 ¤ i ¤ qn � 1), and Σn,i,j (for every n ¥ 0, 0 ¤ i ¤ qn and 1 ¤ j ¤ σn,i; if
σn,i � 0, then there are no Σn,i,j) such that for all n ¥ 0

(a) Bn, . . . , T
hn�1pBnq are pairwise disjoint;

(b) pBn,0, Bn,1, . . . , Bn,qn�1q is a partition of Bn;

(c) T hnpBn,iq �

"
Σn,i�1,1 if σn,i ¡ 0
Bn,i�1 if σn,i � 0 and i   qn � 1

;

(d) if σn,i ¡ 0, then T pΣn,i,jq �

"
Σn,i,j�1 if j   σn,i
Bn,i if j � σn,i and i ¤ qn � 1

;

(e) Bn�1 �

"
Σn,0,1 if σn,0 ¡ 0
Bn,1 if σn,0 � 0

;

and if the Rokhlin towers Rn � pT kpBnqq0¤k¤hn�1 are increasing to the σ-algebra A,
meaning that the σ-algebra generated by tT kpBnq | n P N, 0 ¤ k ¤ hn � 1u is A up to
null sets (since A is standard, this also means that tT kpBnq | n P N, 0 ¤ k ¤ hn � 1u
separates the points). Note that R0 is the tower with only one level B0. The sets Σn,i,j

are called the spacers. In this paper we will usually write

� Xn � Bn \ . . .\ T hn�1pBnq the subset covered by the n-th tower Rn;

� εn � µppXnq
cq where pXnq

c denotes the complement of the subset Xn of X.

Since Xn is increasing and Rn increases to the atomless σ-algebra A, we have
µpXnq Ñ

nÑ�8
1. In other words εn tends to 0.

Before giving examples, the following lemmas give some easy properties on these sys-
tems in order to understand their combinatorial structure and the hypotheses required
in the de�nition.

Lemma 3.3. Let phnq and pσnq be the sequences associated to pqn, pσn,0, . . . , σn,qnqqn P
PN (see De�nition 3.1). The following assertions are equivalent:
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T

T

T

T

Bn

T (Bn)

T 2(Bn)

T 3(Bn)

T 4(Bn)

Rn Rn+1

Bn,0

T (Bn,0)

T 2(Bn,0)

T 3(Bn,0)

T 4(Bn,0)

Σn,0,1

Σn,1,1

Σn,1,2

= Bn+1

Bn,1

T (Bn,1)

T 2(Bn,1)

T 3(Bn,1)

T 4(Bn,1)

Bn,2

T (Bn,2)

T 2(Bn,2)

T 3(Bn,2)

T 4(Bn,2)

Σn,3,1

Figure 4: An example of cutting-and-stacking construction with hn � 5, qn � 3,
σn,0 � 1, σn,1 � 2, σn,2 � 0, σn,3 � 1. We then have hn�1 � 19.

1. the series
¸ σn

hn�1

converges (condition (F) in De�nition 3.2);

2. the series
¸ σn

q0 . . . qn
converges;

3. there exists a constant M0 ¤ 1 such that hn�1 �
nÑ�8

q0 . . . qn
M0

,

and if one of these equivalent assertions is true, then
°

n¥0
σn

q0...qn
� 1

M0
� 1.

Proof of Lemma 3.3. If the series
°

σn

q0...qn
converges, so does the series

°
σn

hn�1
since

hn�1 is greater or equal to q0 . . . qn. Now assume that the series
°

σn

hn�1
converges.

Notice that we have
σn
hn�1

�
hn�1 � qnhn

hn�1

� 1� qn
hn
hn�1

and since the series is convergent, the product
±
qn

hn

hn�1
converges to some M0 ¡ 0,

i.e. q0 . . . qn{hn�1 Ñ M0. The constant M0 is less than or equal to 1 since we have
hn�1 ¥ qnhn for every n ¥ 0. Finally let us assume q0 . . . qn{hn�1 Ñ M0. Notice that
we have

σn
q0 . . . qn

�
hn�1 � qnhn
q0 . . . qn

�
hn�1

q0 . . . qn
�

hn
q0 . . . qn�1

,

so by telescoping consecutive terms, we get
°

n¥0
σn

q0...qn
� limnÑ8

hn�1

q0...qn
� h0 �

1
M0

� 1
and we are done for the equivalence between the three assumptions.

Lemma 3.4. Let T : X Ñ X be a bimeasurable bijection. Assume that T preserves a
non-zero measure µ and it admits a sequence of Rokhlin towers as in De�nition 3.2.
The following hold:
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1. the levels T kpBnq of the n-th Rokhlin tower Rn have µ-measure
µpB0q

q0 . . . qn�1

;

2. µ is �nite if and only if the condition (F) is satis�ed. Furthermore, if µ is a
probability measure (this implies that T is a rank-one system), then µpB0q � M0

and hn�1 ¤
q0 . . . qn
M0

, where M0 is given by Lemma 3.3.

Proof of Lemma 3.4. For a �xed n, the levels of Rn have the same measure by T -
invariance of the measure µ. Moreover the �rst level Bn is a disjoint union of qn levels
Bn,0, . . . , Bn,qn�1 of Rn�1. Then it is clear by induction that a level of Rn has measure
µpB0q

q0...qn�1
. Since the sequence pXnqn¥0 is increasing to X, and Xn�1 is obtained from Xn

by adding σn spacers, which are levels of Rn�1, we get

µpXq � µpX0q �
¸
n¥0

µpXn�1zXnq � µpB0q �
¸
n¥0

µpB0qσn
q0 . . . qn

, (1)

so µpB0q is non-zero, and µpXq is �nite if and only if the sum
°

n¥0
σn

q0...qn
is �nite.

Finally, let us assume that µ is a probability measure. This implies
°

n¥0
σn

q0...qn
� 1

M0
�1

and, using (1), we get µpB0q � M0. The measurable set Xn is the disjoint union of hn
levels of Rn, so the inequality hn ¤

q0...qn�1

M1
follows from the fact that µ is a probability

measure.

It is possible to build a �nite measure-preserving transformation T of rank one with a
given combinatorial setting pqn, pσn,0, . . . , σn,qnqqn¥0 P PN satisfying the hypothesis (F).
For instance it su�ces to build pXnq as an increasing sequence of intervals of R�, with
Bn,i and Σn,i,j being subintervals of equal length and disjoint (for a �xed n), each on
which T is de�ned as an a�ne map, and with B0 � r0,M0s. The convergence of the
series

°
σn

hn�1
and Lemma 3.3 ensure that X �

�
Xn is equal to r0, 1s (up to a null

set), so the Lebesgue measure on r0, 1s is a probability measure preserved by T . Notice
that if the series is divergent, we can set B0 � r0, 1s and this de�nes T on the set
of positive real numbers endowed with the Lebesgue measure, so this is an in�nite
measure-preserving transformation.

Therefore for every pqn, pσn,0, . . . , σn,qnqqn¥0 P PN satisfying the condition (F), there
exists a rank-one system having a cutting-and-stacking construction with these cutting
and spacing parameters, this fact will be used in this paper since it enables us to only
take into account the combinatorics behind the systems.

The hypothesis on the Rokhlin towers Rn aims not only to have εn Ñ 0 but also to
de�ne two isomorphic systems when they admit cutting-and-stacking constructions with
the same cutting and spacing parameters. Moreover if T admits such a construction
with Rokhlin towers increasing to a sub-σ-algebra B of A, then T , seen as an element
of AutpX,A, µq, is not necessarily a rank-one system but admits a rank-one system (T
on the sub-σ-algebra B) as a factor.

Two di�erent families of cutting and spacing parameters do not necessarily de�ne
non-isomorphic systems. Indeed in a construction of a rank-one system with parame-
ters qn and σn,i, one can decide to only consider a subsequence Rnk

of Rokhlin towers.
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For example, the new cutting parameters will be qnk
qnk�1 . . . qnk�1�1 for k ¥ 0.

The rank-one systems form a class of ergodic and zero entropy systems. The easiest
examples of rank-one systems are the irrational rotations

Rθ : z P T ÞÑ e2iπθz P T

for every irrational numbers θ, where T is the unit circle endowed with its Haar measure.
These systems are not weakly mixing. Moreover they have discrete spectrum and the
point spectrum of Rθ is teinθ | n P Zu, so by the Halmos-von Neumann Theorem
[HVN42], Rθ and Rθ1 are isomorphic if and only if θ � θ1 mod Z or θ � �θ1 mod Z.

The odometers are rank-one. These are exactly the rank-one systems without
spacers (i.e. σn,i � 0), so the Rokhlin towers are partitions of the space. Such a
system is isomorphic to the adding machine S in the space

±
n¥0 t0, 1, . . . , qn � 1u,

namely the addition by p1, 0, 0, 0, . . .q with carry over to the right, de�ned for every
x P

±
n¥0 t0, 1, . . . , qn � 1u by

Sx �

"
p0, . . . , 0, xi � 1, xi�1, . . .q if i� min tj ¥ 0 | xj �� qj � 1u is �nite
p0, 0, 0, . . .q if x � pq0 � 1, q1 � 1, q2 � 1, . . .q

and it preserves the product of uniform probability measures on each �nite set t0, 1, . . . , qn�
1u. Denote the cylinders of length k by

rx0, . . . , xk�1sk �

#
y P

¹
n¥0

t0, 1, . . . , qn � 1u | y0 � x0, . . . , yk�1 � xk�1

+
.

If S is the odometer on the space
±

n¥0 t0, 1, . . . , qn � 1u, we can also set a partially
de�ned map

ζn : Xzr, . . . , , qn�1 � 1sn Ñ Xzr, . . . , , 0sn

(the symbol  means that there is no requirement on the value at some coordinate)
which is the addition by

p0, . . . , 0loomoon
n�1 times

, 1, 0, 0, . . .q

(so S and ζ1 coincide on Xzrq0 � 1s1). Then we have

Bn � r0, . . . , 0loomoon
n times

sn,

Bn,i � r0, . . . , 0loomoon
n times

, isn�1

and Bn,i � ζ in�1pBn,0q for every 0 ¤ i ¤ qn � 1, so it provides a scale in Bn. Note
that it is possible to recover the odometer S from these partially de�ned maps ζn (see
Figure 5). In Section 5.1, the strategy will be to build S from partially de�ned maps
ζn.
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ζ2

[0]

[1]

[2]

[0, 0]

[1, 0]

[2, 0]

[0, 1]

[1, 1]

[2, 1]

[0, 0]

[1, 0]

[2, 0]

[0, 1]

[1, 1]

[2, 1]

[0, 0, 0]

[1, 0, 0]

[2, 0, 0]

[0, 1, 0]

[1, 1, 0]

[2, 1, 0]

[0, 0, 1]

[1, 0, 1]

[2, 0, 1]

[0, 1, 1]

[1, 1, 1]

[2, 1, 1]

[0, 0, 2]

[1, 0, 2]

[2, 0, 2]

[0, 1, 2]

[1, 1, 2]

[2, 1, 2]

ζ3 ζ3

R1 R2

R2 R3

Figure 5: Example of odometer with q0 � 3, q1 � 2, q2 � 3.

In the class of odometers, the number of occurrences of every prime factors in the
set tqn | n ¥ 0u form a total invariant of conjugacy. As for irrational rotations, it
is a consequence of the Halmos-von Neumann Theorem since odometers have discrete
spectrum and their eigenvalues are given by these occurrences. In particular odometers
have eigenvalues non-equal to 1 and are not weakly mixing, moreover odometers and
irrational rotations are not isomorphic. Notice that the Halmos-von Neumann Theorem
implies that the conjugacy classes among ergodic systems with discrete spectrum coin-
cide with the �ip-conjugacy classes since the point spectrum of a system is a subgroup
of T. If every prime number has in�nite multiplicity in the set tqn | n ¥ 0u, then the
odometer is said to be universal. An odometer is dyadic if 2 is the only prime factor.

Chacon's map is the �rst example of weakly mixing system which is not strongly
mixing [Cha69] and was the starting point for the notion of rank-one systems. It
is a rank-one transformation de�ned with cutting and spacing parameters qn � 3,
σn,0 � σn,1 � σn,3 � 0, σn,2 � 1.

3.2 Flexible classes

Now we introduce classes of rank-one systems to which the main result of this paper
applies. First let us consider cutting-and-stacking constructions whose spacing param-
eters have controlled asymptotics. Recall that PN is the set of sequences of cutting and
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spacing parameters. As introduced in De�nition 3.1, phnq, pσnq and pZnq denotes the
sequences associated to a sequence in PN: hn is the height of the n-th tower, σn the
number of new spacers at step n and Zn is the maximum number of spacers between
two consecutive towers, over the �rst n steps.

De�nition 3.5. A construction by cutting and stacking with cutting and spacing pa-
rameters pqn, pσn,0, . . . , σn,qnqqn¥0 P PN is saidCSP ("controlled-spacing-parameter")
if there exists a constant C ¡ 0 such that Zn ¤ Chn for all n. It is furthermore BSP
("bounded-spacing-parameter") if Zn ¤ C and σn,0 � σn,qn � 0 for all n. A
rank-one system T is BSP if it admits a BSP cutting-and-stacking construction.

Odometers and Chacon's map are examples of BSP rank-one systems. Moreover
BSP implies CSP. The interest in the BSP property is its stability after skipping steps
in the cutting-and-stacking process, as stated in the following lemma.

σn,1 = 1

σn,0 = 0

σn,2 = 0

σn+1,0 = 0

σn+1,1 = 2

σn+1,2 = 0

σ′
n,0 = 0

σ′
n,1 = 1 σ′

n,3 = 1

σ′
n,2 = 2

σ′
n,4 = 0

Rn Rn+1 Rn+2

Figure 6: Illustration of the proof of Lemma 3.6, spacing parameters from Rn to Rn�2

with qn � qn�1 � 2 (the coloured levels are the base and the roof of the towers).

Lemma 3.6. Given a BSP cutting-and-stacking construction, any subsequence of its
Rokhlin towers still provides a BSP construction with the same constant C.

Proof of Lemma 3.6. Let qn and σn,i be the cutting and spacing parameters of the BSP
construction, C the bound for the spacing parameters σn,i, Rn the associated towers
and Rnk

a subsequence. Let k be an integer and assume nk�1 � nk � 2. Denote by
q1nk

and σ1nk,i
the new cutting and spacing parameters from Rnk

to Rnk�1
. It is easy to

show that q1nk
� qnk

qnk�1, σ
1
nk,0

� σ1nk,q1nk
� 0 and for every 1 ¤ j ¤ qnk�1, σ

1
nk,pj�1qqnk

�i

is equal to σnk,i if 1 ¤ i ¤ qnk
� 1, σnk�1,j if i � qnk

(see Figure 6). Thus the non-
zero spacing parameters from Rnk

to Rnk�1
are of the form σnk,i or σnk�1,i and they

are all bounded above by C. For nk�1 bigger than nk � 2, the result is now clear by
induction.
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If the parameters σn,qn are non-zero, then skipping steps in the cutting-and-stacking
process will cause an accumulation of spacers above the last columns and the new
spacing parameters will not be bounded if the subsequence is properly chosen so that
the jumps nk�1 � nk increase quickly enough. We have the same problem for σn,0
(accumulation of spacers at the bottom of the �rst columns), hence the conditions
σn,0 � σn,qn � 0 in the de�nition of BSP.

Lemma 3.6 has no reason to hold for CSP construction that are not BSP. Indeed
the spacing parameters from Rnk

to Rnk�1
have to be compared with hnk

, the height of
Rnk

. The comparison is easily obtained for the spacing parameters σnk,i, 0 ¤ i ¤ qnk
,

but for the other spacing parameters, we only know that they are bounded above by
Chnk�1, Chnk�2, . . . , Chnk�1�1.

In the sequel we will see other important CSP examples by considering classes
containing "nice" cutting-and-stacking constructions, meaning that we will be able to
properly choose the parameters in order to have the desired quanti�cation of the cocycles
for the orbit equivalence built in Section 5.1. By de�nition, every �exible class C will
be associated to some subset FC of P�, which can be considered as su�cient conditions
that the cutting and spacing parameters have to satisfy at each step for the underlying
transformation to belong to C. Recall that P� denotes the set of all �nite sequences of
cutting and stacking parameters.

De�nition 3.7. A class C of rank-one systems is said to be �exible if there exists a
subset FC of P� satisfying the following properties:

1. there exists a constant C ¡ 0 such that for all pqn, pσn,0, . . . , σn,qnqqn¥0 P PN

satisfying the condition (F) in De�nition 3.2, if FC contains every projection
pqk, pσk,0, . . . , σk,qkqq0¤k¤n P Pn�1 for n ¥ 0, then these parameters de�ne a CSP
construction (with the constant C) and the underlying rank-one transformation
is in C;

2. there exists a cutting and spacing parameter pq0, pσ0,0 . . . , σ0,q0qq in FC with q0 ¥ 3;

3. there is a constant C 1 ¡ 0 such that for all n ¥ 1, if pqk, pσk,0, . . . , σk,qkqq0¤k¤n�1 is
in FC, then there are in�nitely many integers qn such that pqk, pσk,0, . . . , σk,qkqq0¤k¤n

is in FC for some σn,0, . . . , σn,qn satisfying the inequality

σn ¤ C 1qnhn�1

where phkq0¤k¤n�1 and pσkq0¤k¤n denote the �nite sequences associated to the
�nite sequence pqk, pσk,0, . . . , σk,qkqq0¤k¤n of cutting and stacking parameters.

A rank-one system T is �exible if tT u is a �exible class.

The third point of the de�nition aims to recursively choose the cutting parameters
(and we want them to increase quickly enough) with an asymptotic control on pσnqn,
while the �rst point guarantees that it is possible to do so for the underlying system to
be in the class C. The second point is minor, but it is required for the initialization of
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the recursive construction of an odometer orbit equivalent to an element of our �exible
class (see Lemma 5.10 and Remark 5.11). It also ensures that FC is not an empty set.

Notice that if a construction satis�es Zn ¤ Chn�1 for all n, then it is in particular
CSP and we get σn ¤ Cpqn�1qhn�1 ¤ 2Cqnhn�1 as in the third point of De�nition 3.7.

We now give examples of �exible classes. The proof is given in Section 4.

Proposition 3.8. 1. Every BSP rank-one system is �exible.

2. For every nonempty open subset V of R, the set tRθ | θ P V XpRzQqu is a �exible
class.

3. For every irrational number θ, the class of rank-one systems which have e2iπθ as
an eigenvalue is �exible.

4. The class of strongly mixing rank-one systems is �exible.

Theorems A, C, E and F follow from Proposition 3.8 and the following theorem
which is the main result.

Theorem 3.9. Let φ : R� Ñ R� be a map satisfying φptq �
tÑ�8

o
�
t1{3
�
. If C is a

�exible class, then there exists T in C which is φ-integrably orbit equivalent to the
universal odometer.

4 Proof of Proposition 3.8

In this section we prove the four statements in Proposition 3.8.

4.1 BSP systems

Let T be a BSP rank-one system, C � tT u and qn, σn,i the parameters of a BSP con-

struction of T , with a constant C ¡ 0. For every n ¥ 0 and j ¥ 1, let σ
pn,n�jq
0 , . . . , σ

pn,n�jq
qn...qn�j�1

be the spacing parameters fromRn toRn�j, assuming that the steps forRn�1, . . . ,Rn�j�1

are skipped during the construction (we then have σ
pn,n�1q
i � σn,i and also σ

pn,n�jq
i � 0

for i equal to 0 and qn . . . qn�j�1 by Lemma 3.6). The new cutting parameters are
qpn,n�jq � qn . . . qn�j�1 and are large enough with huge jumps j. Now de�ne

FC �

"�
qpnk,nk�1q,

�
σ
pnk,nk�1q
0 , . . . , σ

pnk,nk�1q

pqpnk,nk�1qq




0¤k¤m

��� m ¥ 0, 0 � n0   n1   . . .   nm�1

*
.

Using Lemma 3.6, the new spacing parameters σ
pnk,nk�1q
j are bounded by C and we get

¸
1¤j¤qpnk,nk�1q

σ
pnk,nk�1q
j ¤ Cqpnk,nk�1q.

The set of parameters FC thus witnesses that tT u is �exible.
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4.2 Irrational rotations

We now consider a construction from [DEJ�23]. For every irrational number θ, Drillick,
Espinosa-Dominguez, Jones-Baro, Leng, Mandelshtam and Silva give an explicit cutting-
and-stacking construction of a transformation T which is the irrational rotation of angle
θ when the construction yields a �nite measure-preserving system.

The construction in [DEJ�23]. Let θ be an irrational number and rq�1; q0, q1, . . .s
its continued fraction expansion, with q�1 � tθu and positive integers q0, q1, . . .. Let us
assume that there is no integer n such that qk � 1 for every k ¥ n. We consider the
sequence phnqn¥0 de�ned by h�1 � 0, h0 � 1 and hk�1 � qkhk � hk�1 for every k ¥ 0
(the integer hk is the denominator of the k-th convergent of the irrational number θ).
Finally, for every k ¥ 0, we set σk,i � 0 for every i P t0, 1, . . . , qk � 1u, and σk,qk �
hk�1. Then, the sequence of cutting and stacking parameters pqk, pσk,0, . . . , σk,qkqqk¥0

provides a rank-one system. This system is the irrational rotation of angle θ if and
only if Condition (F) is satis�ed, and this last condition holds if and only if the series°

k¥0
1

qkqk�1
converges (see Theorems 3.1 and 5.1 in [DEJ�23]).

Remark 4.1. Equivalently, we can de�ne rank-one systems with cutting parameters po-
tentially equal to 1, provided that there are in�nitely many cutting parameters greater
than or equal to 2, but our construction of orbit equivalence is not well-de�ned with this
weaker assumption. Therefore, in the proof of Proposition 3.8 for irrational rotations,
one of the main goals is to avoid cutting parameters equal to 1.

Remark 4.2. It is proven in [DEJ�23] that the set of irrational numbers θ such that
the associated series

°
k¥0

1
qkqk�1

converges has measure zero.

Proof of Proposition 3.8 for these systems. Let V be a nonempty open subset
of R and

C � tRθ | θ P V X pRzQqu.
We now prove that C is a �exible class.

We �rst use the following basic fact from the theory of continued fractions: if A
denotes the set of sequences pqiqi¥�1 of integers such that q0, q1, . . . are positive, and if
A is equipped with the induced product topology, then the map

pqiqi¥�1 P A ÞÑ rq�1; q0, q1, . . .s P RzQ,

is a homeomorphism (see [EW11, Lemma 3.4] for instance). We can then �x integers
n0 ¥ 0 and Q�1, Q0, . . . , Qn0 (where Q0, . . . , Qn0 are positive) such that Q0 . . . Qn0 is
greater than or equal to 3 and the following holds: for every irrational number θ, if the
�rst coe�cients of its continued fraction expansion are Q�1, Q0, . . . , Qn0 , then θ is in
V .

We write Q � pQ0, . . . , Qn0q and we consider the set F̃pQq of �nite sequences
pq̃k, pσ̃k,0, . . . , σ̃k,q̃kqq0¤k¤n such that n ¥ n0 and for all k P t0, . . . , nu,

q̃k � Qk if k ¤ n0,
q̃k ¥ 2 if k ¡ n0,
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and

σ̃k,i � 0 for i P t0, . . . , q̃k � 1u,

σ̃k,q̃k � h̃k�1

(where ph̃kq0¤k¤n is the associated height sequence and h̃�1 � 0). The �nite sequences
of F̃pQq may not be �nite sequences of cutting and stacking parameters in the sense
of De�nition 3.1, since the integers Q0, . . . , Qn0 may be equal to 1. Moreover, even
if the integers Q0, . . . , Qn0 were greater than or equal to 2, we could not prove that
C is a �exible class with FC � F̃pQq, since the �rst cutting parameters q̃1, . . . , q̃n0

cannot be chosen large enough. Notice that, although we may have q̃k � 1 for some
k P t0, 1, . . . , n0u, a �nite sequence pq̃k, pσ̃k,0, . . . , σ̃k,qkqq0¤k¤n can still de�ne the �rst
pn � 1q steps of a cutting-and-stacking construction, and we associate to it another
�nite sequence pqk, pσk,0, . . . , σk,qkqq0¤k¤n�n0 corresponding to the cutting-and-stacking
construction obtained from the previous one by skipping the steps 1, 2, . . . , n0. We get
h0 � h̃0 � 1, q0 � Q0 . . . Qn0 ¥ 3 and for all @k P t1, . . . , n� n0u,

qk � q̃n0�k ¥ 2,

hk � h̃n0�k,
σk,i � σ̃n0�k,i � 0 for i P t0, . . . , qk � 1u,

σk,qk � σ̃n0�k,q̃n0�k
� h̃n0�k�1 � hk�1 if k ¥ 2.

For k � 1, we have σ1,q1 � h̃n0 , where h̃n0 is not equal to h0. Setting C � C 1 � h̃n0

(this constant only depends on Q0, . . . , Qn0), we have Z1 ¤ Ch1 and σ1 ¤ C 1h0. We
immediately get the inequalities Zk ¤ Chk and σk ¤ C 1hk�1 for k P t2, . . . , n� n0u.

Let FpQq be the set of �nite sequences pqk, pσk,0, . . . , σk,qkqq0¤k¤n�n0 obtained from
�nite sequences pq̃k, pσ̃k,0, . . . , σ̃k,qkqq0¤k¤n P F̃pQq. It is now easy to check that C is a
�exible class, with the set of parameters FC � FpQq and the constants C and C 1.

4.3 Systems with a given eigenvalue

Let θ be an irrational number and C the class of rank-one systems which has λ� e2iπθ

as an eigenvalue. In [DV23], Danilenko and Vieprik present an explicit cutting-and-
stacking construction of a system in C. The parameters are chosen in the following way
(see the proof of Theorem 4.1 in [DV23]).

The construction of Danilenko and Vieprik. For every n ¥ 1, we �x a number
jn P t1, . . . , nu such that δn � |1 � λjn | is less than 2π{n. Fix n ¥ 1, assume that
pqk, pσk,0, . . . , σk,qkqq0¤k¤n�1 has already been constructed with an auxiliary condition

hn ¡
n4

δn2

. (2)

Danilenko and Vieprik show the existence of a sequence pℓ
pnq
m qm¥1 of positive integers

less than or equal to 2π{δn2 , such that for every m ¥ 1,

|1� λmhn�pℓ
pnq
1 �...�ℓ

pnq
m qjn2 |  

2π

n2
. (3)
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Next, let qn be an integer large enough so that the auxiliary condition (2) holds at the
next step, namely

hn�1 � qnhn � pℓ
pnq
1 � . . .� ℓ

pnq
qn�1qjn2 ¡

pn� 1q4

δpn�1q2

(in [DV23], qn is chosen as the smallest integer satisfying the property but it is not
needed, so there are in�nitely many choices). Finally the spacing parameters at this

step are de�ned by σn,0 � σn,qn � 0 and σn,m � ℓ
pnq
m jn2 for 1 ¤ m ¤ qn � 1.

With these parameters satisfying (2) and (3), λ is an eigenvalue of the underlying
rank-one system (see [DV23], proof of Theorem 4.1, for details).

Proof of Proposition 3.8 for these systems. Let us consider the same construc-
tion as above, but with the following auxiliary condition:

hn ¡ max

�
n4

δn2

,
pn� 1q4

δpn�1q2



, (4)

which is stronger than the previous auxiliary condition (2). Note that the real numbers
δi have been �xed before setting the parameters.

The subset FC of P� is de�ned to be the set of �nite sequences pqk, pσk,0, . . . , σk,qkqq0¤k¤n

constructed in a recursive way. Any cutting and spacing parameter pq0, pσ0,0, . . . , σq0,0qq
is in FC, and if pqk, pσk,0, . . . , σk,qkqq0¤k¤n�1 is in FC, then so is pqk, pσk,0, . . . , σk,qkqq0¤k¤n

for every pqn, σn,0, . . . , σn,qnq that we can obtain at the next step, as described above
but with the stronger auxiliary condition (4).

Let p � pqn, pσn,0, . . . , σn,qnqqn¥0 be a sequence of cutting and spacing parameters.
If all its projections are in FC, then p provides a CSP construction with C � 2π. Indeed,
we have σn,m � ℓ

pnq
m jn2 ¤ 2πn2{δn2   2πhn. As mentioned above, Conditions (2) and (3)

imply that the sequence p provides rank-one systems which have λ as an eigenvalue.
Finally, if pqk, pσk,0, . . . , σk,qkqq0¤k¤n�1 is a �nite sequence in FC, we can choose a

large enough integer qn so that the following holds at the next step:

hn�1 ¡ max

�
pn� 1q4

δpn�1q2
,
pn� 2q4

δpn�2q2




(in particular, the new auxiliary condition (4) is satis�ed). We use the same spacing

parameters as before, namely σn,m � ℓ
pnq
m jn2 . Using jn2 ¤ n2 and ℓ

pnq
m ¤ 2π

δn2
, this gives

σn � pℓ
pnq
1 � . . .� ℓ

pnq
qn�1qjn2 ¤ qn

2πn2

δn2

¤ qnhn�1,

so the third point of De�nition 3.7 is satis�ed for C 1 � 1.

4.4 Strongly mixing systems

Let C be the class of strongly mixing rank-one systems. We consider the construction of
Ornstein in [Orn72]. The property the parameters have to satisfy at each step is given
by the following lemma (Lemma 3.2 in [Orn72]), proven with a probabilistic method.
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Lemma 4.3. Let N and K be positive integers and ε ¡ 0, α ¡ 0. Then there exist
integers m ¡ N and a1, . . . , am such that

�

���°j�k
i�j ai

��� ¤ K for all 1 ¤ j ¤ j � k ¤ m;

� denoting by Hpℓ, kq the number of j such that
j�ķ

i�j

ai � ℓ, for 1 ¤ j ¤ j � k ¤ m,

then Hpℓ, kq   α
pm� kq

K
for every k   p1� εqm.

The set of parameters FC is de�ned in a recursive way, as in Section 4.3: any
cutting and spacing parameter pq0, pσ0,0, . . . , σq0,0qq is in FC, and from a �nite sequence
of parameters pqk, pσk,0, . . . , σk,qkqq0¤k¤n�1 in FC, pqk, pσk,0, . . . , σk,qkqq0¤k¤n is also in
FC if the new parameters can be written as qn � m and σn,i � ai � hn�1 where
m, a1, . . . , am are integers whose existence is granted by Lemma 4.3 with N ¡ 10n,
K � hn�1, ε � 10n�3 and α � 5{4. There are in�nitely many possibilities for qn as N
can be arbitrarily large. It is shown in [Orn72] that cutting-and-stacking constructions
with these parameters give strongly mixing systems, it is clear that they are CSP with
C � 2 and the third point of De�nition 3.7 is satis�ed for C 1 � 2.

5 From �exible classes to the universal odometer

The goal of this section is to prove Theorem 3.9, namely that for every φ : R� Ñ R�

satisfying φpxq � opt1{3q, any �exible class contains a rank-one system which is φ-
integrably orbit equivalent to the universal odometer.

5.1 The construction

Overview of the construction. We �rst present a natural adaptation to the case of
rank-one system of Kerr and Li's construction of an explicit orbit equivalence between
the universal odometer and any other odometers. We will then see that the quanti�ca-
tion of the cocycles becomes more complicated due to the presence of non-zero spacing
parameters.

Let T P AutpX,µq be a rank-one system and consider a cutting-and-stacking con-
struction of this transformation with the same notations qn, σn,i, σn, hn,Rn, εn, Xn as in
De�nition 3.2. From the sequence of Rokhlin towers Rn, new towers R1

n will be built as
Rokhlin towers for a new system S. These towers R1

n will have no spacers, i.e. σ1n,i � 0,
so they will be partitions of X. The construction will ensure that R1

n increases to the
σ-algebra A using the fact that it is the case for Rn, so S will be an odometer. For
the odometer S to be universal, we �x a sequence of prime numbers ppnqn¥0 such that
every prime number appears in�nitely many times, and every cutting parameter q1n will
be a multiple of pn.

We will recursively de�ne S on subsets increasing to X up to a null set. More
precisely if the n-th tower R1

n has been built and its base and its height are de-
noted by B1

n and h1n, then S is provisionally de�ned on all the levels of the tower
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except the highest one and maps the i-th level to the pi � 1q-th one. So R1
n is exactly

pB1
n, SpB

1
nq, . . . , S

h1n�1pB1
nqq and S is de�ned on XzSh1n�1pB1

nq. To re�ne S, i.e. to de�ne
it on a greater set, we have to build the next towerR1

n�1 and de�ne S as forR1
n. In order

to do so and according to De�nition 3.2, we have to determine a subdivision of the base
B1

n into q1n subsets B1
n,0, . . . , B

1
n,q1n�1. We �nd a function ζn�1 mapping bimeasurably

each B1
n,i to B

1
n,i�1 for 0 ¤ i ¤ q1n � 2. On the subset Dn�1 �

�
0¤i¤q1n�2 S

h1n�1pB1
n,iq

of the roof Sh1n�1pBnq of R1
n, S will coincide with ζn�1S

�h1n and will be de�ned on
XzSh1n�1pB1

n�1q � D1 \ . . . \Dn�1 where B1
n�1 � B1

n,0 is the base of the new Rokhlin
tower Rn�1 for S. To sum up, S is successively de�ned by the �nite approxima-
tions obtained from the maps ζn. Up to conjugacy, ζn is exactly the addition by
p0, . . . , 0loomoon
n�1 times

, 1, 0, 0, . . .q with carry over to the right (as de�ned in Section 3.1), restricted

to r0, . . . , 0sn�1zr0, . . . , 0, q
1
n�1 � 1sn.

The construction of the maps ζn is by induction on n ¥ 0. At step n we will actually
de�ne

ζn�1 : B
1
n,0 \ . . .\B1

n,q1n�2 Ñ B1
n,1 \ . . .\B1

n,q1n�1.

In order to build ζn�1, a second induction on a parameter m ¥ n is required. Actually,
B1

n,i will be the disjoint union of the B1
n,ipmq for m ¥ n, and this inner recursion

consists in choosing m-bricks to de�ne B1
n,ipmq. By de�nition, the m-bricks will be the

m-levels (i.e. the levels of Rm) explicitly chosen to constitute B1
n,ipmq. Using powers of

T , m-bricks of B1
n,i are mapped to the ones of B1

n,i�1 (there will be as many in Bn,i as in
B1

n,i�1) and this gives ζn�1 whose orbits are included in those of T , implying immediately
that the orbits of S satisfy the same property. The reverse inclusion between the orbits
will be more di�cult to prove and will be due to the choice of the bricks (see Remark 5.1
after the construction).

The construction. T is a rank-one system in AutpX,µq. We �x one of its cutting-
and-stacking construction whose parameters are denoted as in De�nition 3.2. Let
ppnqn¥0 be a sequence of prime numbers such that every prime number appears in-
�nitely many times.

In the sequel, we will assume that, given the cutting parameters of T , some pos-
itive integers q1n and tn,m that we will introduce are well-de�ned. In Section 5.3 (see
Lemma 5.10), we will give conditions on the parameters of T for these quantities (and
so the construction) to be well-de�ned.

� n ��� 1 : We �rst build R1
1 and ζ1 by an induction over m ¥ 1. We could denote

by R1
0 the trivial tower pXq with its base B1

0 � X. At the end of step n � 1, S
is not yet de�ned on the roof of the tower R1

1, i.e. on its highest level, which is a
Rokhlin tower of S.

� m ��� 1 : Let q10 ¡ 0 be the largest multiple of p0 such that q10 ¤ q0 � 1.

Remark 7.1. At this step, we simply have to assume q0 ¡ p0 for the integer
q10 to be non-zero. However, for the well de�nition of other quantities at
other steps, the conditions on the cutting parameters of T get more and
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more technical, this is the reason why we �rst assume that the parameters
of T are chosen so that the positive quantities are well-de�ned and we will
then state the conditions in Lemma 5.10 (as mentioned before the beginning
of the construction).

For every 0 ¤ i ¤ q10 � 1, we de�ne

B1
0,ip1q� T ipB1q

and
ζ1p1q :

§
0¤i¤q10�2

B1
0,ip1q Ñ

§
0¤i¤q10�2

B1
0,i�1p1q

coinciding with T on its domain (hence every subset B1
0,ip1q is composed of

a unique 1-brick T ipB1q).

� m ¡¡¡ 1 : Assume that the subsets B1
0,ipMq have been built for every 1 ¤

M ¤ m� 1 and 0 ¤ i ¤ q10 � 1. Let

W1,m � Xz
§

1¤M¤m�1

§
0¤i¤q10�1

B1
0,ipMq

be the remaining piece of X at the end of the pm� 1q-th step (we could also
de�ne W1,1 � X).

Remark 7.2. Notice that m-levels are either contained in W1,m or disjoint
from it since XzW1,m is composed of M -levels for 1 ¤ M ¤ m � 1 and the
Rokhlin towers are nested. This will more generally hold true for Wn,m with
n ¥ 2.

Let r1,m be the number of integers j P J0, hm�1K such that T jpBmq � W1,m,
denoted by

0 ¤ j
p1,mq
1   j

p1,mq
2   . . .   jp1,mqr1,m

  hm.

Let t1,m be the positive integer such that q10t1,m is the largest multiple of q10
such that q10t1,m   r1,m (we assume that we can choose the cutting parameters
of T for this integer to be positive, see Lemma 5.10). The �rst q10t1,m m-levels
contained in W1,m are now used as m-bricks, they are split in q10 groups of
t1,m m-bricks of the subsets B1

0,i in the following way and the same will be
done at steps n ¡ 1 (the fact that the inequality q10t1,m   r1,m is strict, and
the way we make the q10 groups will guarantee an easy control of the cocycles,
see Lemma 5.4 used for Lemmas 5.16 and 5.19). For every 0 ¤ i ¤ q10 � 1,
we de�ne

B1
0,ipmq�

§
0¤t¤t1,m�1

T

�
j
p1,mq

i�1�tq10



pBmq

and ζ1pmq coinciding with T

�
j
p1,mq

i�2�tq10



�

�
j
p1,mq

i�1�tq10



on T

�
j
p1,mq

i�1�tq10



pBmq for every

0 ¤ i ¤ q10 � 2 and 0 ¤ t ¤ t1,m � 1, so that each brick T

�
j
p1,mq

i�1�tq10



pBmq
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is mapped on another T

�
j
p1,mq

i�2�tq10



pBmq. Thus ζ1pmq maps each B1

0,ipmq on
B1

0,i�1pmq and this gives

ζ1pmq :
§

0¤i¤q10�2

B1
0,ipmq Ñ

§
0¤i¤q10�2

B1
0,i�1pmq.

End of Step n � 1: For every 0 ¤ i ¤ q10 � 1, we de�ne

B1
0,i �

§
m¥1

B1
0,ipmq

(the set of its m-bricks for all m ¥ 1), B1
1 � B1

0,0 and

ζ1 :
§

0¤i¤q10�2

B1
0,i Ñ

§
0¤i¤q10�2

B1
0,i�1

coinciding with the maps ζ1pmq on their respective domain (see Figure 7).

The universal odometer S we want to build is partially de�ned on X. More precisely
we de�ne it on the domain D1 �

�
0¤i¤q10�2B

1
0,i of ζ1 so that it coincides with ζ1. This

gives the �rst Rokhlin tower R1
1 � pB1

0,0, . . . , B
1
0,q11�1q � pB1

1, SpB
1
1q, . . . , S

q10�1pB1
1qq.

The next step will provide us a re�nement R1
2 of the tower R1

1, allowing us to extend
partially S on the highest level of the R1

1.

� n ¡¡¡ 1 : Assume that steps 1, . . . , n � 1 have been achieved. There are nested
towers R1

1, . . . ,R1
n�1. The k-th tower R1

k has h1k � q10 . . . q
1
k�1 levels and its base

B1
k is partitioned in q1k levels B

1
k,0, . . . , B

1
k,q1k�1. These levels belong to R1

k�1, whose

base is B1
k�1 � B1

k,0, with ζk�1 mapping B1
k,i to B

1
k,i�1. The map S is de�ned on

D1 \ . . .\Dn�1 using the maps ζ1, . . . , ζn�1, where D1 \ . . .\Dn�1 corresponds
to the union of all the levels of R1

n�1 except its roof.

The map S is not yet de�ned on the roof of R1
n�1. By partitioning B

1
n�1 in subsets

B1
n�1,0, . . . , B

1
n�1,q1n�1�1, we will de�ne R1

n which re�nes R1
n�1 and a function ζn

mapping B1
n�1,i to B

1
n�1,i�1. The extension of S will be de�ned on all the levels

of R1
n, except its roof (which is contained in the one of R1

n�1). We will construct
the subsets B1

n�1,i as was done for the subsets B1
0,i, except that we only use the

"material" in B1
n�1 to form the m-bricks of each B1

n�1,i. In order to do so, notice
that the base B1

n�1 is exactly B
1
n�2,0 (the �rst subset in the subdivision of B1

n�2)
which is the disjoint union of subsets of the form B1

n�2,0pmq for m ¥ n � 1.
Moreover for all n � 1 ¤ M ¤ m, every m-level is contained in an M -level, we
will then pick the new m-bricks in B1

n�2,0pnq, . . . , B
1
n�2,0pmq. This motivates the

de�nition of each set Wn,m (the set of the remaining material to form m-bricks
with an incremented integer m). We now discuss separately the following cases.

� m ��� n : Set
Wn,n � B1

n�2,0pn� 1q \B1
n�2,0pnq (5)
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ζ1(1) ζ1(1)

B′
1 = B′

0,0(
=

⊔
m≥1 B

′
0,0(m)

) B′
0,1(

=
⊔

m≥1 B
′
0,1(m)

) B′
0,2(

=
⊔

m≥1 B
′
0,2(m)

)

ζ1(
=

⊔
m≥1 ζ1(m)

) ζ1(
=

⊔
m≥1 ζ1(m)

)

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

B′
0,0(1) B′

0,1(1) B′
0,2(1)

B′
0,0(2) B′

0,1(2) B′
0,2(2)

ζ1(2) ζ1(2)

ζ1(3) ζ1(3)

B
′ 0,
2
(3
)

B
′ 0,
0
(3
)

B
′ 0,
1
(3
)

Figure 7: First step of the construction (i.e. n � 1).
In Section 5.4, we will de�ne sets En,m for every pair of integers pn,mq satisfying
m ¥ n ¥ 1. The set E1,1 (resp. E1,2; E1,3) is the union of the red areas (resp. red and
blue areas; red, blue and green areas).

and let rn,n be the number of integers j P J0, hn�1K such that T jpBnq � Wn,n

(note that we could have de�ned r1,1 � q0), denoted by

0 ¤ j
pn,nq
1   j

pn,nq
2   . . .   jpn,nqrn,n

  hn.

Let q1n�1 be the largest multiple of pn�1 such that q1n�1   rn,n (we assume
that we can choose the cutting parameters of T for this integer to be positive,
see Lemma 5.10). We then de�ne for every 0 ¤ i ¤ q1n�1 � 1,

B1
n�1,ipnq� T pj

pn,nq
i�1 qpBnq,

meaning that among the n-levels in Wn,n, the n-bricks at step pn, nq are
exactly the �rst q1n�1 ones (and set tn,n � 1 for consistency later on). Let

ζnpnq :
§

0¤i¤q1n�1�2

B1
n�1,ipnq Ñ

§
0¤i¤q1n�1�2

B1
n�1,i�1pnq
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be the map coinciding with T pj
pn,nq
i�2 q�pjpn,nq

i�1 q on eachB1
n�1,ipnq, so thatB

1
n�1,ipnq

is mapped to B1
n�1,i�1pnq.

� m ¡¡¡ n : Set

Wn,m �

� §
n�1¤M¤m

B1
n�2,0pMq

�
z

�
� §

n¤M¤m�1

§
0¤i¤q1n�1�1

B1
n�1,ipMq

�
 (6)

and let rn,m be the number of integers j P J0, hm � 1K such that T jpBmq �
Wn,m, denoted by

0 ¤ j
pn,mq
1   j

pn,mq
2   . . .   jpn,mqrn,m

  hm.

Let tn,m be the positive integer such that q1n�1tn,m is the largest multiple of
q1n�1 such that q1n�1tn,m   rn,m (we assume that we can choose the cutting
parameters of T for this integer to be positive, see Lemma 5.10). The �rst
q1n�1tn,m m-levels contained inWn,m are now used as m-bricks at step pn,mq,
they are split in q1n�1 groups of tn,m m-bricks of the subsets B1

n�1,i in the
following way. For every 0 ¤ i ¤ q1n�1 � 1, we de�ne

B1
n�1,ipmq�

§
0¤t¤tn,m�1

T

�
j
pn,mq

i�1�tq1n�1



pBmq

and ζnpmq coinciding with T

�
j
pn,mq

i�2�tq1n�1



�

�
j
pn,mq

i�1�tq1n�1



on T

�
j
pn,mq

i�1�tq1n�1



pBmq for

every 0 ¤ i ¤ q1n�1�2, 0 ¤ t ¤ tn,m�1, so that eachm-brick T

�
j
pn,mq

i�1�tq1n�1



pBmq

is mapped on another T

�
j
pn,mq

i�2�tq1n�1



pBmq. Thus ζnpmq maps each B1

n�1,ipmq
on B1

n�1,i�1pmq and this gives

ζnpmq :
§

0¤i¤q1n�1�2

B1
n�1,ipmq Ñ

§
0¤i¤q1n�1�2

B1
n�1,i�1pmq.

End of Step n: We de�ne for every 0 ¤ i ¤ q1n�1 � 1,

B1
n�1,i �

§
m¥n

B1
n�1,ipmq

(the set of its m-bricks for m ¥ n), B1
n � B1

n�1,0 and

ζn :
§

0¤i¤q1n�1�2

B1
n�1,i Ñ

§
0¤i¤q1n�1�2

B1
n�1,i�1

coinciding with the maps ζnpmq on their respective domain (see Figure 8 for step
n � 2, after the �rst step illustrated in Figure 7).
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As the base B1
n�1 of R1

n�1 is partitioned in B1
n�1,0 \ . . .\B1

n�1,q1n�1�1, its highest

level Sh1n�1�1pB1
n�1q is partitioned in Sh1n�1�1pB1

n�1,0q\ . . .\S
h1n�1�1pB1

n�1,q1n�1�1q.

The map S is extended in the following way. On

Dn � Sh1n�1�1pB1
n�1,0q \ . . .\ Sh1n�1�1pB1

n�1,q1n�1�2q,

it coincides with ζnS
�ph1n�1�1q. So S maps Sh1n�1�1pB1

n�1,iq on B
1
n�1,i�1. This gives

a Rokhlin tower R1
n for S, nested in the previous one, of base B1

n � B1
n�1,0 and

height h1n � q10 . . . q
1
n�1. Now S is de�ned on pD1\ . . .\Dn�1q \Dn. The set Dn

consists in the levels of Rn, except the highest one, which are contained in the
highest level of R1

n�1.

{
{

(
=
⊔

m≥2
B′

1,0
(m)

)

(
=
⊔

m≥2
B′

1,1
(m)

)

B′
2 = B′

1,0

B′
1,1

(
=
⊔

m≥2
ζ2(m)

)ζ2

B′
1 = B′

0,0 B′
0,1 B′

0,2

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

ζ1 ζ1

B′
1,1(3)

B′
1,0(3)B′

1,0(2)

B′
1,1(2) ζ1

(
B′

1,1(3)
)

ζ1
(
B′

1,0(3)
)

ζ1
(
B′

1,0(2)
)

ζ1
(
B′

1,1(2)
)

ζ21
(
B′

1,1(3)
)

ζ21
(
B′

1,0(3)
)

ζ21
(
B′

1,0(2)
)

ζ21
(
B′

1,1(2)
)

ζ2(2)
ζ2(3)

Figure 8: From the �rst step (illustrated in Figure 7) to the second one.
In B1

1, we inductively build B1
1,ip2q, B

1
1,ip2q, B

1
1,ip3q, . . . for every 0 ¤ i ¤ q11 � 1 (in

this example, we have q11 � 2). Each set B1
1,ip2q is composed of a unique 2-level in

B1
0,0p1q\B

1
0,0p2q (i.e. in pale red and pale blue areas). Then each set B1

1,ip3q is composed
of 3-levels in B1

0,0p1q\B
1
0,0p2q\B

1
0,0p3q (i.e. in pale red, pale blue and pale green areas)

and so on. The structure that we build in B1
1 � B1

0,0 can be translated in B1
0,1 and B

1
0,2

using the map ζ1.
In Section 5.4, we will de�ne sets En,m for every pair of integers pn,mq satisfying
m ¥ n ¥ 1. The set E2,1 (resp. E2,2) is the union of the areas hatched in blue (resp. in
blue or green).

Remark 5.1. Notice that the inclusion of the S-orbits in the T -orbits is easy since S
is de�ned from maps ζnpmq which are "piecewise powers of T".

The reverse inclusion will follow from the fact that we have tn,n � 1 for every n ¥ 1
(at step pn, nq we form groups of only one n-level). Indeed, uniqueness implies that
these chosen blocks are linked by ζnpnq and hence clearly by S (on the contrary, an
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m-level, for m ¡ n, of B1
n�1,i is mapped by ζnpmq to only one of the tn,m m-levels of

B1
n�1,i�1, and not to the other). Thus ensuring that the unique n-brick of each B1

n�1,i

is a large part of it enables the system S to capture most of the T -orbits.

5.2 First properties of this construction

Recall that we consider a cutting-and-stacking construction of T with the same nota-
tions as in De�nition 3.2 (qn, σn,i, Rn, Xn, εn, ...), and the sequences phnq, pσnq and
pZnq associated to the cutting and spacing parameters, and the notations q1n, R1

n, ...
refer to the construction of S.

We state some important properties preparing for further results in Section 5.4.
Many of them enable us to only take into account the combinatorics behind a cutting-
and-stacking construction. We assume that all the "largest multiples" (for every n   m,
the largest multiple q1n�1 of pn�1 such that q1n�1   rn,n, and the largest multiple q1n�1tn,m
of q1n�1 such that q1n�1tn,m   rn,m) are non-zero. In Section 5.3 (see Lemma 5.10), we
will see how to choose the parameters for the construction to be well-de�ned.

Lemma 5.2. Every tower R1
n is a partition of X.

Proof of Lemma 5.2. Let n ¥ 1. The levels of R1
n are pairwise disjoint by the de�nition

of pWn,mqm¥n. It remains to show that R1
n covers the whole space. Recall that Xn

denotes the subset covered by the tower Rn, and εn the measure of its complement.
The result holds for n � 1 since µpW1,mq Ñ

mÑ�8
0. Indeed W1,m�1XXm is the union

of the m-levels which are not chosen at step p1,mq. By the de�nition of t1,m, there are
at most q10. So we have W1,m�1 ¤ εm � q10µpBmq Ñ 0.

For n ¡ 1, it su�ces to show that the levels B1
n�1,0, . . . , B

1
n�1,q1n�1�1 of R1

n form a

partition of the base B1
n�1 of R1

n�1. We have to show that the measure of

W̃n,m � B1
n�1z

�
� §

n¤M¤m�1

§
0¤i¤q1n�1�1

B1
n�1,ipMq

�


tends 0 as mÑ �8. But this set W̃n,m is the disjoint union of
�

M¥m�1B
1
n�2,0pMq and

Wn,m. It is clear that

µ

� §
M¥m�1

B1
n�2,0pMq

�
Ñ

mÑ�8
0,

since µ is a �nite measure. The set Wn,m is obtained from Wn,m�1 by adding B1
n�2,0pmq

and removing q1n�1tn,m�1 pm�1q-levels. Thus we have µ pWn,mq Ñ
mÑ�8

0 by the de�nition

of ptn,mqm¥n. Hence we have µ
�
W̃n,m

	
Ñ

mÑ�8
0 and we are done.

As a consequence, if pR1
nqn increases to the σ-algebra A (this will be proved in

Corollary 5.14), then S is a rank-one system without spacer, so this is an odometer.
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Lemma 5.3. Let n ¥ 1. On the base B1
n of the n-th S-Rokhlin tower R1

n, S is de�ned
as follows. For every 0 ¤ i ¤ h1n � 1, we have

Si � ζ i01 . . . ζ
in�1
n on B1

n

with i0 P J0, q10 � 1K, . . . , in�1 P J0, q1n�1 � 1K such that i �
n�1°
ℓ�0

q10 . . . q
1
ℓ�1iℓ �

n�1°
ℓ�0

h1ℓiℓ.

Proof of Lemma 5.3. By induction over n ¥ 1. It is clear for n � 1 since S coincides
with ζ1 on the levels of R1

1 except its roof. Assume that the result holds for n ¥ 1. The
tower R1

n is divided in q1n subcolumns whose levels are exactly the ones of R1
n�1, and the

in-th subcolumn (0 ¤ in ¤ h1n � 1) is the S-Rokhlin tower of height h1n and base B1
n,in .

Let 0 ¤ i ¤ h1n�1� 1. By the equality B1
n�1 � B1

n,0 and by the de�nition of S from ζn�1

(at the end of step n � 1 of the construction), Si � Sjζ inn�1 on B1
n�1 for non-negative

integers in and j such that i � inh
1
n � j and j   h1n. The set ζ inn�1pB

1
n,0q is equal to

B1
n,in , so this is a subset of B1

n, hence the result by the induction hypothesis.

Therefore the subset Dn de�ned in the construction can be written as follows:

Dn � ζ
q10�1
1 . . . ζ

q1n�2�1

n�1

�
� §

0¤in¤q1n�1�2

B1
n�1,in

�


� ζ
q10�1
1 . . . ζ

q1n�2�1

n�1

�
� §

0¤in¤q1n�1�2

ζ inn pB
1
n�1,0q

�


(7)

and S coincides with ζnζ
�pq1n�2�1q

n�1 . . . ζ
�pq10�1q
1 on Dn.

By the cocycle of ζnpmq, we mean the integer-valued map de�ned on the domain
of ζnpmq and which maps x to the unique integer k satisfying ζnpmqx � T kx.

Lemma 5.4. The cocycle of ζnpmq is positive and bounded above by hm�1 � Zm�1.

Proof of Lemma 5.4. By de�nition, for �xed integers 0 ¤ i ¤ q1n�1�2 and 0 ¤ t ¤ tn,m�

1, the cocycle on B � T

�
j
pn,mq

i�1�tq1n�1



pBmq takes the value ∆j � j

pn,mq
i�2�tq1n�1

� j
pn,mq
i�1�tq1n�1

.

Let us recall that the integers

0 ¤ j
pn,mq
1   j

pn,mq
2   . . .   jpn,mqrn,m

  hm

are the set of indices j P J0, hm � 1K such that T jpBmq � Wn,m. Thus ∆j is obviously
positive. Let us �x an pm � 1q-level B� which is not chosen at step pn,m � 1q, so it is
contained in Wn,m. If m is equal to n, we can choose B� � B1

n�2,0pn � 1q. For m ¡ n,
the existence of B� is granted by the fact that we have q1n�1tn,m�1   rn,m�1. We write
it as B� � T k0pBm�1q, where k0 is an integer in J0, hm�1 � 1K.

By de�nition, ∆j is the least positive integer j such that T jpBq is inWn,m. Moreover
the m-levels of B� are in Wn,m. Therefore the consecutive m-levels T pBq, . . . , T∆j�1pBq
are not in B�.
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First case. In the tower Rm, assume that the m-levels T pBq, . . . , T∆j�1pBq are before
T k0pBm�1,0q, i.e. before the �rstm-level of B�. Therefore the enumeration B, . . . , T∆jpBq
is included in the enumeration

Σm�1,0,1, . . . ,Σm�1,0,σm�1,0 , Bm�1,0, . . . , T
k0pBm�1,0q,

implying that ∆j ¤ σm�1,0 � k0 ¤ Zm�1 � hm�1.

Second case. Now assume that T pBq, . . . , T∆j�1pBq are after T k0pBm�1,qm�1�1q, i.e. af-
ter the last m-level of B�. Therefore the enumeration B, . . . , T∆jpBq is included in the
enumeration

T k0pBm�1,qm�1�1q, . . . , T
hm�1�1pBm�1,qm�1�1q,Σm�1,qm�1,1, . . . ,Σm�1,qm�1,σm�1,qm�1

,

and we get ∆j ¤ phm�1 � k0 � 1q � σm�1,qm�1 ¤ hm�1 � Zm�1.

Third case. Finally if T pBq, . . . , T∆j�1pBq are between T k0pBm�1,iq and T
k0pBm�1,i�1q

for some 0 ¤ i ¤ qm�1 � 2, i.e. between two consecutive m-levels of B�, then the enu-
meration B, . . . , T∆jpBq is included in the enumeration

T k0pBm�1,iq, . . . , T
hm�1�1pBm�1,iq,Σm�1,i,1, . . . ,Σm�1,i,σm�1,i

, Bm�1,i�1, . . . , T
k0pBm�1,i�1q,

this gives ∆j ¤ phm�1 � k0 � 1q � σm�1,i � pk0 � 1q ¤ hm�1 � Zm�1.

Lemma 5.5. An m-brick at step n is included in an M-brick at step n � 1 for some
n� 1 ¤M ¤ m.

Proof of Lemma 5.5. This follows directly from the de�nition of Wn,m in the construc-
tion (see Section 5.1). Indeed the "pMq" in "B1

n�2,0pMq" means that we only consider
the M -bricks, at step n� 1, composing B1

n�2,0.

We now present a combinatorial description of the construction.

Lemma 5.6. The quantities rn,m, qn, q
1
n, tn,m, σn satisfy the following recurrence rela-

tion:
t0,1 � 0;

for m ¥ 2, t0,m � σm�1;

for m � n ¥ 1,

$''&
''%

rn,n � qn�1 � tn�1,n,

q1n�1 �

Z
rn,n � 1

pn�1

^
pn�1,

tn,n � 1;

for m ¡ n ¥ 1,

$&
%

rn,m � qm�1prn,m�1 � q1n�1tn,m�1q � tn�1,m,

tn,m �

Z
rn,m � 1

q1n�1

^
.
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During the construction, some integers have been de�ned for consistency (r1,1 � q0,
tn,n � 1). Note that in this lemma, we also de�ne the integers tn,m for n � 0. This
enables us to extend the relations

rn,n � qn�1 � tn�1,n and rn,m � qm�1prn,m�1 � q1n�1tn,m�1q � tn�1,m

for n � 1.

Proof of Lemma 5.6. Case n � 1. For m � 1, the r1,1 1-levels potentially chosen to be
1-bricks are exactly the levels of R1, so we have r1,1 � q0�t0,1 since t0,1 � 0. We choose
q10 of them, where q10 is the largest multiple of p0 such that q10   r1,1, so q

1
0 is equal to

tpr1,1 � 1q{p0up0. Finally q
1
0 is obviously equal to q10t1,1 since t1,1 � 1. For m ¡ 1, there

are rn,m m-levels inW1,m: some of them are in the r1,m�1�q
1
0t1,m�1 pm�1q-levels which

are not chosen at step p1,m � 1q and the other are the spacers from Rm�1 to Rm. So
we have

r1,m � qm�1pr1,m�1 � q10t1,m�1q � σm�1

and we set t0,m � σm�1. We choose q10t1,m of them as m-bricks, where q10t1,m is the
largest multiple of q10 such that q10t1,m   r1,m, i.e. t1,m � tpr1,m � 1q{q10u.

Case n ¡ 1. For m � n, there are rn,n n-levels in Wn,n � B1
n�2,0pn� 1q \B1

n�2,0pnq.
First, since we have tn�1,n�1 � 1, the set B1

n�2,0pn� 1q is an pn� 1q-brick at step n� 1
and it contains qn�1 n-levels. Secondly B

1
n�2,0pnq is the union of tn�1,n n-bricks. Hence

we have rn,n � qn�1 � tn�1,n. By de�nition, q1n�1 is equal to tprn,n � 1q{pn�1upn�1 and
obviously to q1n�1tn,n with tn,n � 1. For m ¡ n, there are rn,m m-levels in Wn,m. This
set is composed of

� §
n�1¤M¤m�1

B1
n�2,0pMq

�
z

�
� §

n¤M¤m�1

§
0¤i¤q1n�1�1

B1
n�1,ipMq

�


and
B1

n�2,0pmq.

The �rst one is the union of the rn,m�1� q
1
n�1tn,m�1 pm�1q-levels which are not chosen

at step pn,m�1q, and the second one is built at step pn�1,mq from its tn�1,m m-bricks.
So we have

rn,m � qm�1prn,m�1 � q1n�1tn,m�1q � tn�1,m.

We choose q1n�1tn,m of these m-levels as m-bricks at this step, where q1n�1tn,m is the
largest multiple of q1n�1 such that q1n�1tn,m   rn,m, i.e. tn,m � tprn,m � 1q{q1n�1u.
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It will be more convenient to use the following slight modi�cation of Lemma 5.6:

t0,1 � 0;

for m ¥ 2, t0,m � σm�1;

for m � n ¥ 1,

$&
%

rn,n � qn�1 � tn�1,n,
q1n�1 ¤ rn,n � 1,
tn,n � 1;

for m ¡ n ¥ 1,

$&
%

rn,m ¤ qm�1q
1
n�1 � tn�1,m,

tn,m ¤
rn,m � 1

q1n�1

.

(8)

This is a consequence of the inequalities txu ¤ x and rn,m�1� q
1
n�1tn,m�1 ¤ q1n�1 (by

the de�nition of tn,m�1).

As the strategy will be to recursively choose large enough cutting parameters qn for
T , we would like to understand the asymptotic behaviour of q1n as qn increases. Then
the goal is to �nd bounds for q1n{qn.

Lemma 5.7. For every n ¥ 0, we have

q1n ¥ qn � p1� pnq.

Proof of Lemma 5.7. Using the equalities q1n �
Y
rn�1,n�1�1

pn

]
pn and rn�1,n�1 � qn�tn,n�1

in Lemma 5.6, where the integer tn,n�1 is non-negative, we get

q1n ¥

�
rn�1,n�1 � 1

pn
� 1



pn ¥ qn � 1� pn

and we are done.

We have found a lower bound for q1n{qn (up to some additional term �p1�pnq). Let
us �nd an upper bound.

Lemma 5.8. For every n ¥ 1, we have

q1n ¤ 3qn �
σn

q10 . . . q
1
n�1

.

With an asymptotic control on σn, using �exible classes, we will be able to get
q1n ¤ 4qn (see Lemma 5.12).

Proof of Lemma 5.8. By induction over i P J0, n � 1K (with n ¥ 1) and using (8), we
show that

q1n ¤ qn

�
2�

i̧

j�1

j¹
k�1

1

q1n�k

�
� tn�1�i,n�1

i�1¹
k�1

1

q1n�k

.
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For i � 0, we have q1n   rn�1,n�1 � qn � tn,n�1 and

tn,n�1 ¤
rn,n�1 � 1

q1n�1

¤
1

q1n�1

�
qnq

1
n�1 � tn�1,n�1

�
� qn �

tn�1,n�1

q1n�1

,

so we get q1n ¤ 2qn �
tn�1,n�1

q1n�1
. For 0 ¤ i ¤ n� 2, we have

tn�1�i,n�1 ¤
rn�1�i,n�1 � 1

q1n�2�i

¤
1

q1n�2�i

�
qnq

1
n�2�i � tn�2�i,n�1

�
� qn �

tn�2�i,n�1

q1n�2�i

.

If the result holds true for i, we get

q1n ¤ qn

�
2�

i̧

j�1

j¹
k�1

1

q1n�k

�
�

�
qn �

tn�2�i,n�1

q1n�2�i


 i�1¹
k�1

1

q1n�k

� qn

�
2�

i�1̧

j�1

j¹
k�1

1

q1n�k

�
� tn�1�pi�1q,n

i�2¹
k�1

1

q1n�k

,

so the result is also true for i� 1.
Taking i � n� 1, this gives the lemma since q1ℓ ¥ 2 for every integer ℓ ¥ 1.

5.3 Towards �exible classes

We now explain why �exible classes �t in this construction.
First a condition for the construction to be well-de�ned needs an inductive choice

of the cutting parameters pqnqn¥0 of T (see Lemma 5.9). Secondly, a control on the
spacing parameters will imply useful asymptotic controls for the quanti�cation of the
cocycles (see Lemma 5.12). Note that, in the proof of Theorem 3.9 (see Section 5.5),
we will need other estimates to quantify the cocycles. It will be possible, again using
the de�nition of a �exible class, to inductively build large enough cutting parameters
in order to have these estimates.

If the parameters are chosen according to a set FC � P� associated to a �exible
class C, the underlying rank-one system has the desired property, i.e. it is in C, and is
orbit equivalent to the universal odometer, with some quanti�cation guaranteed by the
control of the spacing parameters and by the fact that the cutting parameters qn have
been recursively chosen and large enough.

Lemma 5.9. Let T be a rank-one system with cutting and spacing parameters

pqn, pσn,0, . . . , σn,qnqqn¥0

such that the construction in Section 5.1 is well-de�ned. Then, for every n P N, q1n only
depends on pqk, pσk,0, . . . , σk,qkqq0¤k¤n.

Proof of Lemma 5.9. This directly follows from Lemma 5.6.
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Then the main novelty in this paper is to build the rank-one system T while
we are building the universal odometer S. Once pq10, . . . , q

1
nq has been built from

pqk, pσk,0, . . . , σk,qkqq0¤k¤n, we are free to choose pqn�1, pσn�1,0, . . . , σn�1,qn�1qq for the
de�nition of q1n�1. The recursive de�nition of the cutting parameters is one of the main
ideas behind the de�nition of a �exible class, and it allows to �nd cutting parameters
satisfying some assumptions, for example the assumptions of the following lemma.

Lemma 5.10. Assume that for every n P N,
qn ¡ max ppn, q

1
0, . . . , q

1
n�1q. (9)

Then the construction is well-de�ned, i.e. all the "largest multiples" are non-zero (that
is, the largest multiple q1n�1 of pn�1 such that q1n�1   rn,n, and the largest multiple
q1n�1tn,m of q1n�1 such that q1n�1tn,m   rn,m).

Remark 5.11. Without loss of generality, we can assume that p0 is equal to 2. There-
fore the assumption of Lemma 5.10 for n � 0 requires that q0 is greater than 2, which
explains the second item of De�nition 3.7.

Proof of Lemma 5.10. First, let us prove this result at step n � 1 of the outer recursion.
At step m � 1 of the inner recursion, q0 is greater than p0, so q

1
0 (the largest multiple

of p0 such that q10 ¤ q0 � 1) is positive. For a step m ¡ 1, notice that there exists an
pm� 1q-level which is not chosen at the previous step (as we have r1,m�1 pm� 1q-levels
in W1,m�1 and we choose q10t1,m�1 of them, with q10t1,m�1   r1,m�1) so its qm�1 m-levels
are inW1,m and this gives r1,m ¥ qm�1. Therefore we have r1,m ¡ q10 and t1,m is non-zero.

Now consider a step n ¡ 1 of the outer recursion. For m � n, B1
n�2,0pn � 1q is an

pn � 1q-level in Wn,n, so we have rn,n ¥ qn�1 ¡ pn�1, hence the positivity of q1n�1. For
m ¡ n, we have rn,m ¥ qm�1 (same argument as for n � 1), this implies rn,m ¡ q1n�1

and tn,m is positive.

The next lemma re�nes the estimate given by Lemma 5.8, with assumptions which
will be satis�ed in the context of �exible classes.

Lemma 5.12. Let pqn, pσn,0, . . . , σn,qnqqn¥0 be the parameters of a CSP construction of
T with associated constant C ¡ 0. Assume that there exists a constant C 1 ¡ 0 such that

@n ¥ 1, σn ¤ C 1qnhn�1 and qn � p1� pnq ¥ C 1hn

(for instance, if the third point of De�nition 3.7 holds and if, given pqk, pσ0,k, . . . , σqk,kqq0¤k¤n�1,
qn is chosen large enough). Then we get the following bound:

@n P N,
q1n
qn

¤ 4.

Proof of Lemma 5.12. For n � 0, this is a consequence of the inequality q10 ¤ q0 � 1.
Now let us prove the result for n ¥ 1. Using Lemma 5.8, it su�ces to get

@n ¥ 1,
σn

q10 . . . q
1
n�1

¤ qn.

But we have
σn ¤ C 1qnhn�1 ¤ qn pqn�1 � p1� pn�1qq ,

and the right hand side is bounded above by qnq
1
n�1 (by Lemma 5.7), so the result

follows from the inequality q1n�1 ¤ q10 . . . q
1
n�1.
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5.4 Equality of the orbits, universal odometer and quantitative

control of the cocycles

Recall the notations for the construction of T by cutting and stacking, pqnqn and pσn,iqn,i
are respectively the cutting and spacing parameters. The tower Rn is the n-th T -
Rokhlin tower, its height is hn, it covers the subset Xn of X, εn is the measure of its
complement, Zn is the maximum of the spacing parameters over the �rst n steps and
M0 is the measure of the unique 0-level B0.

We use similar notations q1n, h
1
n and R1

n for S. We also set

H 1
n � h11 � . . .� h1n

for all n ¥ 1, and H 1
0 � 0.

The construction is assumed to be well-de�ned, considering a cutting-and-stacking
de�nition of T with parameters satisfying the criterion (9) (see Lemma 5.10). Since S
is piecewise given by powers of T , the S-orbits are included in the T -orbits. It remains
to show the reverse inclusion, to prove that pR1

nqn¥0 is increasing to the σ-algebra A
and to quantify the cocycles.

As in [KL24], we set

En,m �

h1n�1§
i�0

Si

� §
n¤M¤m

B1
n�1,0pMq

�
�

§
0¤i0¤q10�1

...
0¤in�1¤q1n�1�1

ζ i01 . . . ζ
in�1
n

� §
n¤M¤m

B1
n�1,0pMq

�

and
Kn �

§
0 i¤hn�1

T i�1pBnq\T ipBnq�En,n

T ipBnq.

Since B1
n�1,0 is exactly the base B1

n of R1
n, the subsets S

ipB1
n�1,0q, for 0 ¤ i ¤ h1n � 1,

are exactly the levels of R1
n which is a partition of X. So the motivation behind the

de�nition of En,m is �rst to approximate B1
n�1,0 by its M -bricks for n ¤ M ¤ m, and

then the set En,m is actually the union of theM -bricks, for n ¤M ¤ m, of step n of the
outer recursion, and their translates by S in the other levels in R1

n (the sets E1,1, E1,2,
E1,3, E2,1 and E2,2 are illustrated in Figures 7 and 8). We get a better approximation
of X as m increases and notice that En,m is a subset of Xm since every M -brick, for
n ¤ M ¤ m, is a union of m-levels. Finally the sets Kn, for n ¥ 1, are introduced in
order to show that the system S captures the T -orbits (recall Remark 5.1).

Lemma 5.13. The following holds:

µ pXmzEn,mq ¤

$'''&
'''%

H 1
n

hm
for n   m

H 1
n�1 � pn�1h

1
n�1

hn
for n � m

.
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Proof of Lemma 5.13. We prove the inclusions

En,m � En�1,m � . . . � E2,m � E1,m � Xm

and we bound the measures of XmzE1,m and each set Ek,mzEk�1,m. The result follows
from the decomposition

XmzEn,m � pXmzE1,mq \
§

2¤k¤n

pEk�1,mzEk,mq (10)

and σ-additivity of µ.
The set E1,m is composed of m-levels, so it is contained in Xm. If m � 1, then

XmzE1,m is the disjoint union of r1,1 � q10 1-levels (see step p1, 1q of the construction).
If m ¡ 1, then XmzE1,m is the disjoint union of r1,m � q10t1,m m-levels (see step p1,mq
of the construction). By de�nition of q10 (if m � 1) or t1,m (if m ¡ 1), we thus have

µ pXmzE1,mq ¤

$'''&
'''%

p0
hm

if m � 1

h11
hm

if m ¡ 1

(recall that h11 � q10).
Let k P J2, nK. The function ζk has been built in order to map eachM -brick (M ¥ k)

at step k to another. But such a brick is contained in an M 1-brick (k � 1 ¤ M 1 ¤ M)
from the previous step k � 1 (see Lemma 5.5). We then have

§
0¤ik�1¤q1k�1�1

ζ
ik�1

k

� §
k¤M¤m

B1
k�1,0pMq

�
�

§
k�1¤M¤m

B1
k�2,0pMq.

Applying ζ i01 . . . ζ
ik�2

k�1 and considering the union over i0, . . . , ik�2, we get the inclusion
Ek,m � Ek�1,m and the equality

Ek�1,mzEk,m �

§
0¤i0¤q10�1

...
0¤ik�2¤q1k�2�1

ζ i01 . . . ζ
ik�2

k�1

�
������
� §

k�1¤M¤m

B1
k�2,0pMq

�
z

�
� §

k¤M¤m

§
0¤ik�1¤q1k�1�1

B1
k�1,ik

pMq

�


looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon
�: r�s

�
�����.

So the measure of Ek�1,mzEk,m is q10 . . . q
1
k�2µ pr�sq � h1k�1µ pr�sq by T -invariance. The

set r�s is obtained fromWk,m (see (5) and (6)) by removing the m-bricks that have been
chosen at step pk,mq. If m � k, then r�s is the disjoint union of rk,k�q

1
k�1 m-levels (see

step pk, kq of the construction). If m ¡ k, then r�s is the disjoint union of rk,m�q
1
k�1tk,m
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m-levels (see step pk,mq of the construction). By de�nition of q1k�1 (if m � k) or tk,m
(if m ¡ k), we thus have

µ pr�sq ¤

$'''&
'''%

pk�1

hm
if m � k

q1k�1

hm
if m ¡ k

and

µ pEk�1,mzEk,mq ¤

$'''&
'''%

h1k�1pk�1

hm
if m � k

h1k
hm

if m ¡ k

.

Using (10) and σ-additivity of µ, we get the following inequalities. If m ¡ n, we get

µ pXmzEn,mq � µ pXmzE1,mq �
¸

2¤k¤n

µ pEk�1,mzEk,mq ¤
¸

1¤k¤n

h1k
hm

�
H 1

n

hm
.

If m � n, we get

µ pXmzEn,mq �

�
µ pXmzE1,mq �

¸
2¤k¤m�1

µ pEk�1,mzEk,mq

�
� µ pEn�1,nzEn,nq

¤
¸

1¤k¤m�1

h1k
hm

�
pn�1h

1
n�1

hn

�
H 1

n�1

hn
�
pn�1h

1
n�1

hm

and we are done.

The quantity H 1
n�1 � pn�1h

1
n�1 only depends on q11, . . . , q

1
n�2 which only depend on

pqi, pσi,jq0¤j¤qiq0¤i¤n�2 (see Lemma 5.9), and hn is larger than q1 . . . qn�1{M0 with qn�1

appearing at step n � 1. Then the strategy will be to recursively choose the cutting
parameters qn�1 so that

H 1
n�1 � pn�1h

1
n�1

hn
Ñ

nÑ�8
0. (11)

As µpXnq Ñ
nÑ�8

1, this gives µpEn,nq Ñ
nÑ�8

1 by Lemma 5.13.

Corollary 5.14. If µpEn,nq Ñ
nÑ�8

1, then S is the universal odometer.

Proof of Corollary 5.14. By the de�nition of q1n at step pn, nq and by choice of the
sequence ppnq, every prime number appears in�nitely many time as a prime factor
among the integers q10, q

1
1, q

1
2, . . .. If S is an odometer, then it is clearly universal. It

remains to show that pR1
nqnPN increases to the σ-algebra A. Then S is a rank-one

system with zero spacing parameters by Lemma 5.2, so this is an odometer.
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Consider a subsequence pnkqk¥0 such that the series
°

k¥0 µppEnk,nk
qcq is convergent.

By the Borel-Cantelli lemma, the set X0 �
�

j¥0

�
k¥j Enk,nk

is of full measure. Let
x, y P X0. Assume that they belong to the same level of R1

n for every n larger that some
threshold N0. The goal is to show that x and y are equal, so that pR1

nqnPN separates
the points of a set of full measure and hence it increases to A.

By the de�nition of X0, there exists an in�nite subset I of N, bounded below by
N0, such that En,n contains x and y for every n P I. Let us �x an integer n P I.
By the de�nition of En,n, x is in some SipB1

n�1,0pnqq and y in some SjpB1
n�1,0pnqq,

for 0 ¤ i, j ¤ q10 . . . q
1
n�1 � 1. But x and y are in the same level of R1

n, furthermore
SipB1

n�1,0pnqq is included in the level SipB1
nq and S

jpB1
n�1,0pnqq in the level SjpB1

nq, so
we have i � j. Moreover, since we have tn,n � 1, all the sets SkpB1

n�1,0pnqq are n-levels,
i.e. levels of the n-th T -Rokhlin tower Rn, so x and y are in the same n-level. This
holds for every n P I, so for in�nitely many n. Moreover pRnqnPN separates the points
up to a null set, since T is rank-one, hence the result.

Lemma 5.15. For every n P N, we have

µpKnq ¥ µpXnq � µ pBnq � 2µ pXnzEn,nq .

Moreover, µ pKnq Ñ
nÑ�8

1 if µpEn,nq Ñ
nÑ�8

1.

Proof of Lemma 5.15. The set Kn is equal to pEn,nzBnq z T pXnzEn,nq, so we get

µ pKnq ¥ µ pEn,nzBnq � µ pT pXnzEn,nqq
¥ µ pEn,nq � µ pBnq � µ pXnzEn,nq
� µpXnq � µ pBnq � 2µ pXnzEn,nq .

The second result follows from the fact that µpXnq Ñ
nÑ�8

1 and µpBnq Ñ
nÑ�8

0.

Lemma 5.16. For every x P Kn, there exists k P Z such that

|k| ¤ 4phn�1 � Zn�1qph
1
n�1q

2

and T�1x � Skx.

Proof of Lemma 5.16. Let x P Kn. By the de�nition of Kn, the points x and T�1x are
in En,n and there exists 1 ¤ i ¤ hn � 1 such that x P T ipBnq. Writing En,n this way:

En,n �
§

0¤i¤h1n�1�1

0¤in�1¤q1n�1�1

Siζ in�1
n

�
B1

n�1,0pnq
�
�

§
0¤i¤h1n�1�1

0¤in�1¤q1n�1�1

Si
�
B1

n�1,in�1
pnq
�
,

it is clear that there exist 0 ¤ k0, k1 ¤ h1n�1�1 such that y � S�k0x and z � S�k1T�1x
are in

�
0¤in�1¤q1n�1�1B

1
n�1,in�1

pnq.

We �rst show that we can write y � ζk2n z for some k2, using the fact that ζn
connects the n-bricks of step pn, nq of the construction (since tn,n � 1). Secondly ζn
can be written as a power of S and the equality y � Sk3z holds for some k3 that we
will be able to bound by Lemma 5.4. Finally the result follows from the bound for each
integer k0, k1, k3.
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Step 1: Finding k2 such that y � ζk2n z. Using Lemma 5.3, we can write

x � ζ i01 . . . ζ
in�2

n�1 y and T�1x � ζj01 . . . ζ
jn�2

n�1 z

for some integers 0 ¤ i0, j0 ¤ q10 � 1, . . . , 0 ¤ in�2, jn�2 ¤ q1n�2 � 1, and there exist
0 ¤ in�1, jn�1 ¤ q1n�1 � 1 such that

y P B1
n�1,in�1

pnq and z P B1
n�1,jn�1

pnq.

More precisely, by Lemma 5.5 and the fact that y and z are in n-bricks at step pn, nq,
we have

x � ζ1pM1q
i0 . . . ζn�1pMn�1q

in�2y and T�1x � ζ1pL1q
j0 . . . ζn�1pLn�1q

jn�2z

with k ¤ Lk,Mk ¤ n for every 1 ¤ k ¤ n� 1. By construction, T and the maps ζkpmq,
for 1 ¤ k ¤ n � 1 and k ¤ m ¤ n, satisfy the following property: for every n-level
T kpBnq, with 0 ¤ k ¤ hn � 1, contained in the domain of the map, if it is mapped to
another n-level T k�ℓpBnq, with 0 ¤ k � ℓ ¤ hn � 1, then the application coincides with
T ℓ on T kpBnq. In other word it consists in going up or down |ℓ| �oors in the tower
Rn, without going above its roof or below its base. Therefore, from B1

n�1,in�1
pnq to

B1
n�1,jn�1

pnq, the map

S̃ �
�
ζ1pL1q

j0 . . . ζn�1pLn�1q
jn�2

��1
T�1ζ1pM1q

i0 . . . ζn�1pMn�1q
in�2

consists in successively going up or down in the tower, so this is a power of T given by
the di�erence between the �oor of B1

n�1,in�1
pnq and the one of B1

n�1,jn�1
pnq. The map

ζjn�1�in�1
n also satis�es this property, thus ζjn�1�in�1

n and S̃ coincide on B1
n�1,in�1

pnq and

y � ζk2n z with k2 � jn�1 � in�1.

Step 2: Finding k3 such that y � Sk3z. Using the Lemma 5.3 and the equality
ζ inpB

1
nq � B1

n�1,i, we have Sh1n�1pjn�1�in�1qy � z, we set k3 � h1n�1 pjn�1 � in�1q and it
remains to �nd a bound for jn�1� in�1. We need to get more information on the power
of T , denoted by T ℓ, which coincides with S̃ on B1

n�1,in�1
pnq. By Lemma 5.4 and the

de�nition of S̃, we get

|ℓ| ¤ phn�1 � Zn�1qpi0 � . . .� in�2q � 1� phn�1 � Zn�1qpj0 � . . .� jn�2q
¤ 2phn�1 � Zn�1qpq

1
0 � . . .� q1n�2q � 1

¤ 3phn�1 � Zn�1qpq
1
0 � . . .� q1n�2q

where "�1" comes from "T�1" in the expression of S̃ and has been bounded by phn�1�
Zn�1qpq

1
0�. . .�q

1
n�2q. The sum q10�. . .�q

1
n�2 is less than the product q10 . . . q

1
n�2 � h1n�1,

this gives
|ℓ| ¤ 3phn�1 � Zn�1qh

1
n�1.

Since ζn has a positive cocycle (by Lemma 5.4), the equality ζ
pjn�1�in�1q
n � T ℓ implies

|ℓ| ¥ |jn�1 � in�1|. Therefore we �nd the bound

|k3| ¤ 3phn�1 � Zn�1qph
1
n�1q

2.
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Step 3: Bounding the integer k such that T�1x � Skx. By the de�nition of k0,
k1 and k3, T

�1x is equal to Skx with k � k1�k3�k0 which is thus bounded as follows:

|k| ¤ |k0| � |k1| � |k3|
¤ 2ph1n�1 � 1q � 3phn�1 � Zn�1qph

1
n�1q

2

¤ 4phn�1 � Zn�1qph
1
n�1q

2,

hence the result.

Corollary 5.17. If µpEn,nq Ñ
nÑ�8

1, then T and S have the same orbits.

Proof of Corollary 5.17. It is clear that the S-orbits are contained in the T -orbits.
By Lemma 5.15,

�
nPNKn is of full measure, so the reverse inclusion follows from

Lemma 5.16.

Remark 5.18. Corollary 5.17 holds for every rank-one system T . Indeed skipping steps
in the cutting-and-stacking process of T recursively increases the cutting parameters
qn, it enables us to get criteria (9) and (11) (the �rst one implies that the construction
in Section 5.1 is well-de�ned, the second one that µpEn,nq Ñ 1).

However the quanti�cation of the cocycles will not necessarily hold for all the rank-
one systems, since we will need to control the quantities Zn depending on the spacing
parameters (see Section 5.5).

Note that by Dye's theorem, it was already known that every rank-one system is
orbit equivalent to the universal odometer, but the proof of this theorem does not
provide an explicit orbit equivalence, thus preventing us from quantifying the cocycles.

Now the goal is to control the cocycle cS. The equalities (7) in Section 5.2 and the
decomposition of Bn�1,i in bricks motivate the following de�nition:

@m ¥ n ¥ 1, Dnpmq � ζ
q10�1
1 . . . ζ

q1n�2�1

n�1

��
0¤in¤q1n�1�2B

1
n�1,inpmq

	
� ζ

q10�1
1 . . . ζ

q1n�2�1

n�1

��
0¤in¤q1n�1�2 ζ

in
n pmqpB

1
n�1,0q

	
.

(12)

It is the union of all the translates of the m-bricks at step pn,mq composing Dn. Note

that S coincides with ζnpmqζ
�pq1n�2�1q

n�1 . . . ζ
�pq10�1q
1 on Dnpmq (since it coincides with

ζnζ
�pq1n�2�1q

n�1 . . . ζ
�pq10�1q
1 and ζn coincides with ζnpmq on the m-bricks at step n). The

partition of Dn into such subsets Dnpmq, for m ¥ n, gives a �ne control of the cocycle
cS.

Lemma 5.19. For 1 ¤ n   m, Dnpmq is contained in XmzEn,m�1 and we have

µpDnpmqq ¤

$'&
'%

εm�1 � εm �
H 1

n

hm�1

if m ¡ n� 1

εm�1 � εm �
H 1

n�1 � pn�1h
1
n�1

hn
if m � n� 1

.

For all n ¥ 1, we have

µpDnpnqq ¤
q1n�1

hn
.
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Moreover for every x P Dnpmq,

|cSpxq| ¤ phm�1 � Zm�1qh
1
n�1.

Proof of Lemma 5.19. For 1 ¤ n   m, Dnpmq is composed of translates of the m-bricks
used at step pn,mq, so it is disjoint from the translates of the M -bricks used at step
pn,Mq for n ¤ M ¤ m � 1, hence the inclusion Dn,m � XmzEn,m�1. The bound for
µpDnpmqq follows from the decomposition XmzEn,m�1 � pXmzXm�1q \ pXm�1zEn,m�1q
and Lemma 5.13.

For n ¥ 1, by the de�nition of Dnpnq and the ζi-invariance of the measure, we get

µpDnpnqq � pq1n�1 � 1qµ
�
B1

n�1,0pnq
�
¤ q1n�1µ

�
B1

n�1,0pnq
�
,

hence the result, since B1
n�1,0pnq is an n-level, so it has measure less than 1{hn.

For the cocycle cS, we �rst decompose Dnpmq in the following way:

Dnpmq �
§
ℓ

ζ
q10�1
1 . . . ζ

q1n�2�1

n�1 pβℓqqlooooooooooomooooooooooon
�:Dℓ

where pβℓqℓ is the family of m-bricks, at step pn,mq, which constitute the subset�
0¤in¤q1n�1�2B

1
n�1,inpmq. For a �xed ℓ, by Lemma 5.5 there exist 1 ¤ L1 ¤ m, . . . ,

n� 1 ¤ Ln�1 ¤ m such that

Dℓ � ζ
q10�1
1 pL1q . . . ζ

q1n�2�1

n�1 pLn�1q pβℓq

and, on this subset, S coincides with ζnpmqζ
�pq1n�2�1q

n�1 pLn�1q . . . ζ
�pq10�1q
1 pL1q. Then using

Lemma 5.4, we get

|pcSq|Dℓ | ¤ phm�1 � Zm�1qppq
1
0 � 1q � . . .� pq1n�2 � 1q � 1q

¤ phm�1 � Zm�1qq
1
0 . . . q

1
n�2

� phm�1 � Zm�1qh
1
n�1,

hence the result.

5.5 Proof of Theorem 3.9

Let T be a rank-one system whose parameters satisfy the criteria (9) and (11). The
�rst one ensures that the construction is well-de�ned (Lemma 5.10), the second one
implies µpEn,nq Ñ 1 (Lemma 5.13), so we have an orbit equivalence between T and S
(Lemma 5.17). We can then de�ne the cocycles cT , cS : X Ñ Z by

@x P X, Tx � ScT pxqx and Sx � T cSpxqx.

In Lemmas 5.16 and 5.19, we obtained bounds for the cocycles on precise subsets
covering X: pKnqn for cT , pDnpmqqn,m for cS. This will provide a bound for the φ-
integral of each cocycle. But �rst, we need to change φ via the following lemma inspired
by Lemma 2.12 in [CJLMT23]. Without loss of generality, φ has the properties given
by the lemma and this will simplify the bound for each φ-integral.
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Lemma 5.20. Let 0   α ¤ 1 and φ : R� Ñ R� satisfying φptq � optαq. Then there
exists Φ: R� Ñ R� with the following properties:

� Φ is increasing;

� Φ is subadditive: @t, s P R�, Φpt� sq ¤ Φptq � Φpsq;

� Φptq � o ptαq;

� φptq � O pΦptqq.

Proof of Lemma 5.20. Set

θ : R�
� Ñ R�

t ÞÑ min

�
1, sup

s¥t

φpsq � 1

s




and
Φ : R� Ñ R�

t ÞÑ

» t

0

θpsqds
.

The map θ is positive-valued and non-increasing, so Φ is an increasing and subadditive
function satisfying Φptq ¥ tθptq for every t P R�. The assumption φptq � optαq implies

that θptq � sups¥t
φpsq�1

s
for t ¡ 0 large enough, so we have

Φptq ¥ tθptq ¥ t sup
s¥t

φpsq � 1

s
¥ φptq.

Finally, for a �xed ε ¡ 0, there exists t0 ¡ 0 such that φpsq ¤ εsα for every s ¥ t0. For
every t ¥ t0, this gives

sup
s¥t

φpsq � 1

s
¤ sup

s¥t

�
ε

s1�α
�

1

s



�

ε

t1�α
�

1

t

and for every t ¥ t0, we have» t

t0

θpsqds ¤

» t

t0

�
ε

s1�α
�

1

s



ds �

ε

α
tα � ln t�

ε

α
tα0 � ln t0,

hence Φptq � optαq.

Lemma 5.21. Assume that criteria (9) (in Lemma 5.10) and (11) (after Lemma 5.13)
are satis�ed. Let φ : R� Ñ R� be an increasing and subadditive map. Then, setting

∆pnq� p1� 2pH 1
n � pnh

1
nqq ph

1
nq

2

�
φph3n�1q

hn�1

�
φpZn�1h

2
n�1q

hn�1



;

∆εpnq� εn�1ph
1
nq

2
�
φph3n�1q � φpZn�1h

2
n�1q

�
,

we have the following bound:»
X

φp|cT pxq|qdµ ¤ φp4ph0 � Z0qph
1
0q

2q � 4
�8̧

n�0

∆pnq � 4
�8̧

n�0

∆εpnq. (13)
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Proof of Lemma 5.21. Motivated by Lemma 5.16, we will rather quantify the cocycle
cT�1 de�ned on X (up to a null set) by

T�1x � ScT�1 pxqx.

It is equivalent to quantifying cT since we have

@x P X, cT�1pxq � �cT pT
�1xq

and µ is T -invariant.
Let pK 1

nqn¡0 be the partition of X inductively de�ned by"
K 1

1 � K1,
@n ¡ 0, K 1

n�1 � Kn�1zpK1 Y . . .YKnq.

The subsets K 1
n are pairwise disjoint and cover the whole space since we have

K 1
1 Y . . .YK 1

n � K1 Y . . .YKn

and µpKnq Ñ 1 (using Lemma 5.15). By the fact that Kn is included in Xn, and by
Lemmas 5.15 and 5.13, we have

µpK 1
n�1q ¤ µpXzKnq

� µpXzXnq � µpXnzKnq
¤ εn � µ pBnq � 2µ pXnzEn,nq

¤ εn �
1� 2pH 1

n�1 � pn�1h
1
n�1q

hn
.

Since K 1
n�1 is contained in Kn�1, Lemma 5.16 implies

@x P K 1
n�1, |cT�1pxq| ¤ 4phn � Znqph

1
nq

2.

We then get»
X

φp|cT pxq|qdµ �

»
X

φp|cT�1pxq|qdµ

�
�8̧

n�0

»
K1

n�1

φp|cT�1pxq|qdµ

¤
�8̧

n�0

µpK 1
n�1qφp4phn � Znqph

1
nq

2q

¤ φp4ph0 � Z0qph
1
0q

2q

�
�8̧

n�1

�
εn �

1� 2pH 1
n�1 � pn�1h

1
n�1q

hn



φp4phn � Znqph

1
nq

2q.

Now we use the assumptions on φ to simplify the previous bound. We have h1n �
h1n�1q

1
n�1 ¤ h1n�1hn (by construction we have q1n�1 ¤ rn,n ¤ hn). By monotonicity and

subadditivity, this yields

φp4phn � Znqph
1
nq

2q ¤ φp4phn � Znqph
1
n�1hnq

2q
¤ 4ph1n�1q

2
�
φph3nq � φpZnh

2
nq
�

and we get the bound (13).
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Lemma 5.22. Assume that criteria (9) (in Lemma 5.10) and (11) (after Lemma 5.13)
are satis�ed and that the following holds:

@n ¥ 0,
q1n
qn

¤ 4

(this is an assumption that we will be able to get by Lemma 5.12, using �exible classes).
Let φ : R� Ñ R� be an increasing and subadditive map. Then, setting

Γ1pnq� 4h1n

�
φph2n�1q

hn�1

�
φpZn�1hn�1q

hn�1



;

Γ2pnq� pH 1
n � pnh

1
nqh

1
n

�
φphn�1q

hn�1

�
φpZn�1q

hn�1



;

Γ3pn,mq� H 1
nh

1
n�1

�
φphmq

hm
�
φpZmq

hm



;

Γεpn,mq� εmh
1
npφphmq � φpZmqq,

we have the following bound:»
X

φp|cS|qdµ ¤ µpD1p1qqφpph0 � Z0qh
1
0q

�
¸
n¥0

Γ1pnq �
¸
n¥0

Γ2pnq �
¸
n¥1

¸
m¥n�1

Γ3pn,mq

�
¸
n¥0

¸
m¥n�1

Γεpn,mq

. (14)

Proof of Lemma 5.22. By Lemma 5.19, for each subset Dnpmq, we found a bound for
the cocycle cS on it, we then get»

X

φp|cS|qdµ �
¸

m¥n¥1

»
Dnpmq

φp|cS|qdµ

¤
¸

m¥n¥1

µpDnpmqqφpphm�1 � Zm�1qh
1
n�1q

¤ µpD1p1qqφpph0 � Z0qh
1
0q

�
¸
n¥2

γ1pnq �
¸
n¥1

γ2pnq �
¸
n¥1

¸
m¥n�2

γ3pn,mq

where
γ1pnq� µpDnpnqqφpphn�1 � Zn�1qh

1
n�1q,

γ2pnq� µpDnpn� 1qqφpphn � Znqh
1
n�1q,

γ3pn,mq� µpDnpmqqφpphm�1 � Zm�1qh
1
n�1q.
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Lemma 5.19 also yields a bound for the measure of each set Dnpmq, this implies:

γ1pnq ¤
q1n�1

hn
φpphn�1 � Zn�1qh

1
n�1q,

γ2pnq ¤

�
εn �

H 1
n�1 � pn�1h

1
n�1

hn



φpphn � Znqh

1
n�1q,

γ3pn,mq ¤

�
εm�1 �

H 1
n

hm�1



φpphm�1 � Zm�1qh

1
n�1q.

For all n ¥ 2, note that we have

φpphn�1 � Zn�1qh
1
n�1q ¤ φpphn�1 � Zn�1qh

1
n�2hn�1q

¤ h1n�2

�
φph2n�1q � φpZn�1hn�1q

�
and

q1n�1

hn
¤

q1n�1

hn�1qn�1

¤
4

hn�1

,

so wet get

γ1pnq ¤ 4h1n�2

�
φph2n�1q

hn�1

�
φpZn�1hn�1q

hn�1



� Γ1pn� 2q.

For γ2pnq and γ3pn,mq, note that we have

@n ¥ 1, @m ¥ n� 1, φpphm�1 � Zm�1qh
1
n�1q ¤ h1n�1pφphm�1q � φpZm�1qq,

so we get

γ2pnq ¤

�
εn �

H 1
n�1 � pn�1h

1
n�1

hn



h1n�1pφphnq � φpZnqq

� εnh
1
n�1pφphnq � φpZnqq �

�
H 1

n�1 � pn�1h
1
n�1

�
h1n�1

�
φphnq

hn
�
φpZnq

hn



� Γεpn� 1, nq � Γ2pn� 1q

and

γ3pn,mq ¤

�
εm�1 �

H 1
n

hm�1



h1n�1pφphm�1q � φpZm�1qq

� εm�1h
1
n�1pφphm�1q � φpZm�1qq �H 1

nh
1
n�1

�
φphm�1q

hm�1

�
φpZm�1q

hm�1



� Γεpn� 1,m� 1q � Γ3pn,m� 1q

.

The bound (14) now follows immediately.

Proof of Theorem 3.9. Let C be a �exible class and φ : R� Ñ R� a map satisfying
φptq �

tÑ�8
o
�
t1{3
�
. If Φ: R� Ñ R� is another map satisfying φptq � O pΦptqq, then

Φ-integrability implies φ-integrability. Therefore, without loss of generality, we assume
that φ satis�es the assumptions of Lemma 5.20, i.e. φ is increasing and subadditive.
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Using the de�nition of a �exible class, we will build T with large enough and induc-
tively chosen cutting parameters qn. Let FC be an associated set of parameters, and
�x the associated constants C and C 1 given in De�nition 3.7. First choose any cutting
and spacing parameter pq0, pσ0,0, . . . , σ0,q0qq in FC such that q0 ¥ 3. Without loss of
generality, we assume p0 � 2 and we get q0 ¡ p0, as required in the assumption of
Lemma 5.10 for n � 0. For a �xed n ¥ 1, assume that pqk, pσk,0, . . . , σk,qkqq0¤k¤n�1 has
already been determined in FC, this immediately gives q10, . . . , q

1
n�1 (see Lemma 5.9).

The goal is to �nd the next parameters with qn large enough. Consider κn ¡ 0 such
that for every t ¥ hnκn the following hold:

κn ¡ max ppn, q
1
0, . . . , q

1
n�1q; (15)

H 1
n � pnh

1
n

t
¤

1

n
. (16)

The assumption φptq � opt1{3q also implies the following inequations for a large
enough κn:

p1� 2pH 1
n � pnh

1
nqq ph

1
nq

2

�
φpt3q

t
�
φpCt3q

t



¤

1

2n
; (17)

ph1nq
2
�
φpt3q � φpCt3q

�
¤

t

2nq0 . . . qn�1

; (18)

4h1n

�
φpt2q

t
�
φpCt2q

t



¤

1

2n
; (19)

pH 1
n � pnh

1
nqh

1
n

�
φptq

t
�
φpCtq

t



¤

1

2n�1
; (20)

@1 ¤ ℓ ¤ n, H 1
ℓh

1
ℓ�1

�
φptq

t
�
φpCtq

t



¤

1

2n�2
; (21)

@0 ¤ ℓ ¤ n, h1ℓ pφptq � φpCtqq ¤
t

2nq0 . . . qn�1

, (22)

for every t ¥ hnκn. With Inequations (17), (18), (19), (20), (21) and (22), we will
respectively �nd bounds for the quantities ∆pnq, ∆εpnq, Γ1pnq, Γ2pnq, Γ3pn,mq and
Γεpn,mq (see Lemmas 5.21 and 5.22).

We then set a new cutting parameter qn ¥ κn large enough with associated spacing
parameters σn,0, . . . , σn,qn so that pqk, pσk,0, . . . , σk,qkqq0¤k¤n P FC, σn ¤ C 1qnhn�1 and
the following additional assumptions are satis�ed:

qn � p1� pnq ¥ C 1hn (23)

and
@0 ¤ k ¤ n� 1, qn ¥ C 12n�kqk. (24)

Let phnq, pσnq and pZnq be the sequences associated to p � pqn, pσn,0, . . . , σn,qnqqn¥0 P
PN (as described in De�nition 3.1), ph1nq the height sequence of the cutting sequence
pq1nqn¥0 for the universal odometer that we build. We �rst check that the underlying
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system is �nite measure-preserving, i.e. the condition (F) in De�nition 3.2 is satis�ed.
But we have

σn
hn�1

¤
C 1qnhn�1

qnqn�1hn�1

�
C 1

qn�1

,

so the summability easily follows from Inequality (24). The underlying system preserves
a probability measure, so it is rank-one. Moreover it belongs to C by the de�nition of
a �exible class.

Inequality (15) ensures that the criterion (9) holds and that the construction in
Section 5.1 is well-de�ned (see Lemma 5.10). Using hn�1 ¥ hnqn, the limit in (11) is a
consequence of Inequality (16) and implies µpEn,nq Ñ 1. Inequality (23) implies

@n P N,
q1n
qn

¤ 4

(see Lemma 5.12).
Then Lemmas 5.21 and 5.22 imply that the bounds (13) for the φ-integral of cT

and (14) for the φ-integral of cS hold. It remains to prove that these bounds are �nite,
namely that the series¸
n¥0

∆pnq,
¸
n¥0

∆εpnq,
¸
n¥0

Γ1pnq,
¸
n¥0

Γ2pnq,
¸
n¥1

¸
m¥n�1

Γ3pn,mq and
¸
n¥0

¸
m¥n�1

Γεpn,mq

converge.
Using the monotonicity of φ and the inequalities Zn�1 ¤ Chn�1 and (17) for t �

hn�1 (which is greater or equal to hnκn), we get ∆pnq ¤ 1
2n
, so the series

°
n¥0∆pnq

converges. It is also straightforward to see that the series
°

n¥0 Γ1pnq and
°

n¥0 Γ2pnq are
convergent, using Inequalities (19) and (20). Inequality (21) implies Γ3pn,mq ¤

1
2m�1 ,

so we get ¸
m¥n�1

Γ3pn,mq ¤
1

2n�1

for every n ¥ 0, and the series
°

n¥1

°
m¥n�1 Γ3pn,mq converges.

For the other series
°

n¥0∆εpnq and
°

n¥0

°
m¥n�1 Γεpn,mq, we have to control the

sequence pεnq (recall that εn � µppXnq
cq). Denote byM0 the measure of B0 (the unique

level of the T -Rokhlin tower R0). For every n ¥ 1, we have

εn �
¸
k¥n

M0

q0 . . . qk
σk ¤

¸
k¥n

M0C
1hk�1

q0 . . . qk�1

¤
¸
k¥n

C 1

qk�1

¤
1

qn�1

¸
k¥n

1

2k�n
¤

2

qn�1

,

using Lemma 3.4 and Inequation (24).
Given n ¥ 0, Inequation (22) and Lemma 3.4 imply

ph1nq
2pφph3n�1q � φpZn�1h

2
n�1qq ¤

hn�1

2nq0 . . . qn�1

¤
qn

2nM0

.

Combining this with the inequality εn�1 ¤ 2{qn, we then get

∆εpnq � εn�1ph
1
nq

2pφph3n�1q � φpZn�1h
2
n�1qq ¤

1

2n�1M0

,
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so the series
°

n¥0∆εpnq converges.
For �xed integers n ¥ 0 and m ¥ n� 1, Inequation (22) and Lemma 3.4 imply

h1npφphmq � φpZmqq ¤
hm

2m�1q0 . . . qm�2

¤
qm�1

2m�1M0

.

Combining this with the inequality εm ¤ 2{qm�1, we then get

Γεpn,mq � εmh
1
npφphmq � φpZmqq ¤

1

2m�2M0

.

This gives ¸
m¥n�1

Γεpn,mq ¤
1

2n�2M0

for every n ¥ 0, so the series
°

n¥0

°
m¥n�1 Γεpn,mq converges.

Therefore the cocycles cT and cS are φ-integrable as wanted, which concludes the
proof.

Remark 5.23. For φ-integrability of cS, we only need to control quantities of the
form φpu2q{u and φpuq{u (φpu3q{u does not appear). Therefore Theorem 3.9 can be
stated with a stronger quanti�cation on the cocycle cS, namely ψ-integrability with
ψptq � opt1{2q (it su�ces to replace t1{3 by t1{2 in Inequation (22)).

We are now able to prove Theorem D.

Proof of Theorem D. Let φ : R� Ñ R� be a map satisfying φptq �
tÑ�8

o
�
t1{3
�
. By

Lemma 5.20, we may and do assume that φ is increasing and subadditive.
Given a �exible class C, an associated set of parameters FC and constants C and C 1,

the last proof shows that we can choose the parameters in the following way. First, we
choose any cutting and spacing parameter pq0, pσ0,0, . . . , σ0,q0qq in FC, with q0 ¥ 3. Then,
if pn � pqk, pσk,0, . . . , σ0,qkqq0¤k¤n�1 has been set, there exists a constant depending on
φ, FC, C, C

1 and pn, denoted by KφpFC, C, C
1,pnq, such that Conditions (15), (16),

(17), (18), (19), (20), (21), (22), (23) and (24) hold for every qn ¥ KφpFC, C, C
1,pnq,

and it remains to �nd such an integer qn and spacing parameters σn,0, . . . , σn,qn such
that pn�1 � pqk, pσk,0, . . . , σ0,qkqq0¤k¤n is in FC and the inequality σn ¤ C 1qnhn�1 holds.

LetQ � pQ�1, . . . , Qn0q be a sequence of integers, where n0, Q0, . . . , Qn0 are positive
and Q0 . . . Qn0 ¥ 3, and let us consider the set of parameters FpQq built in Section 4.2,
and the associated constants CQ and C 1

Q. In this case, the spacing parameters σk,i at
step k are equal to 0 or hk�1, so they are determined by the previous cutting parameters.
Moreover, the �rst cutting parameter q0 is equal to Q0 . . . Qn0 . Therefore, for every
�nite sequence pn � pqk, pσk,0, . . . , σ0,qkqq0¤k¤n�1 in FpQq, we write KφpQ, q1, . . . , qn�1q
instead of KφpFpQq, CQ, C

1
Q,pnq.

Recall that A denotes the set of sequences pqiqi¥�1 of integers such that q0, q1, . . .
are positive. To every sequence ε � pεiqi¥0 P t0, 1u

N, we associate a sequence qpεq P A
inductively de�ned by:

qpεq0 � q0,
@i ¥ 0, qpεqi�1 � KφpQ, qpεq1, . . . , qpεqiq � εi

.

50



Every sequence ε � pεiqi¥0 P t0, 1u
N provides a sequence of parameters in FpQq, whose

cutting parameters are qpεq0, qpεq1, . . ., and which gives rise to the irrational rotation
of angle θpεq� rQ�1, . . . , Qn0 , qpεq1, qpεq2, . . .s.

Let us now consider a nonempty open subset V of R and a �nite sequence Q so that
θpεq is in V for every ε P t0, 1uN. We get that the set of irrational numbers θ in V such
that the irrational rotation of angle θ is φ-integrably orbit equivalent to the universal
odometer contains the set tqpεq | ε P t0, 1uNu, so it is uncountable using the facts that
the map ε P t0, 1uN ÞÑ qpεq P A is injective and the continued fraction expansion is
unique for every irrational number.
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