Odomutants and quantitative orbit equivalence

Corentin Correia (Université Paris-Cité)

Groups, Languages, and Random walks - Cortona

04 - 06 - 2024

Corentin Correia

Odomutants and quantitative OE

04-06-2024

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

1/5

 (X, μ) : standard and atomless probability space

 $\cong ([0,1], \text{Leb})$

Aut $(X, \mu) := \{$ bimeasurable bijections $T \colon X \to X, \ \mu(T^{-1}(.)) = \mu(.) \}$ $\rightsquigarrow \mathbb{Z}$ -actions

・ロト ・回ト ・ヨト ・ヨト … ヨ

Two transformations $S, T \in Aut(X, \mu)$ are orbit equivalent if there exists $\theta \in Aut(X, \mu)$ such that S and $\theta^{-1}T\theta$ have the same orbits.

 θ is called an orbit equivalence.

• • • • • • • • • • • • •

Two transformations $S, T \in Aut(X, \mu)$ are **orbit equivalent** if there exists $\theta \in Aut(X, \mu)$ such that **S** and $\theta^{-1}T\theta$ have the same orbits.

 θ is called an orbit equivalence.

Theorem (Dye - 1959)

If S and T are ergodic, then they are orbit equivalent.

Two transformations $S, T \in Aut(X, \mu)$ are **orbit equivalent** if there exists $\theta \in Aut(X, \mu)$ such that **S** and $\theta^{-1}T\theta$ have the same orbits.

 θ is called an orbit equivalence.

Theorem (DYE - 1959)

If S and T are ergodic, then they are orbit equivalent.

Let $S, T \in Aut(X, \mu)$ be aperiodic transformations.

If
$$S$$
 et $\theta^{-1}T\theta$ have the same orbits :
 \swarrow

$$Sx \in \{(\theta^{-1}T\theta)^{n}(x) \mid n \in \mathbb{Z}\}$$

$$Sx \in \{(\theta^{-1}T\theta)^{c_{S}(x)}(x) \mid n \in \mathbb{Z}\}$$

$$Tx \in \{(\theta S \theta^{-1})^{n}(x) \mid n \in \mathbb{Z}\}$$

$$Sx = (\theta^{-1}T\theta)^{c_{S}(x)}(x)$$

$$Tx = (\theta S \theta^{-1})^{c_{T}(x)}(x)$$

 $c_S \colon X \to \mathbb{Z}$ and $c_T \colon Y \to \mathbb{Z}$ are called the **cocycles** associated to θ .

Let $\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$. S and T are φ -integrably orbit equivalent if there exists an orbit equivalence $\theta \in \operatorname{Aut}(X, \mu)$ and the associated cocycles are φ -integrable :

$$\int_X \varphi(|c_S(x)|) \mathrm{d}\mu(x) < \infty \ \text{and} \ \int_X \varphi(|c_T(x)|) \mathrm{d}\mu(x) < \infty$$

イロト イヨト イヨト イヨト

Let $\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$. S and T are φ -integrably orbit equivalent if there exists an orbit equivalence $\theta \in \operatorname{Aut}(X, \mu)$ and the associated cocycles are φ -integrable :

$$\int_X \varphi(|c_S(x)|) \mathrm{d}\mu(x) < \infty \text{ and } \int_X \varphi(|c_T(x)|) \mathrm{d}\mu(x) < \infty$$

Theorem (David Kerr, Hanfeng Li - 2023)

If S,T are φ -integrably orbit equivalent with $\varphi \geq \log$, then $\mathbf{h}_{\mu}(S) = \mathbf{h}_{\mu}(T)$.

4/5

Let $\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$. S and T are φ -integrably orbit equivalent if there exists an orbit equivalence $\theta \in \operatorname{Aut}(X, \mu)$ and the associated cocycles are φ -integrable :

$$\int_X \varphi(|c_S(x)|) \mathrm{d}\mu(x) < \infty \text{ and } \int_X \varphi(|c_T(x)|) \mathrm{d}\mu(x) < \infty$$

Theorem (David Kerr, Hanfeng Li - 2023)

If S,T are φ -integrably orbit equivalent with $\varphi \geq \log$, then $\mathbf{h}_{\mu}(S) = \mathbf{h}_{\mu}(T)$.

Theorem (C. -2024)

There exist S and T satisfying :

•
$$h_{\mu}(S) = 0; h_{\mu}(T) > 0;$$

Odometer S

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let $\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$. S and T are φ -integrably orbit equivalent if there exists an orbit equivalence $\theta \in \operatorname{Aut}(X, \mu)$ and the associated cocycles are φ -integrable :

$$\int_X \varphi(|c_S(x)|) \mathrm{d}\mu(x) < \infty \text{ and } \int_X \varphi(|c_T(x)|) \mathrm{d}\mu(x) < \infty$$

Theorem (David Kerr, Hanfeng Li - 2023)

If S,T are φ -integrably orbit equivalent with $\varphi \geq \log$, then $\mathbf{h}_{\mu}(S) = \mathbf{h}_{\mu}(T)$.

Theorem (C. - 2024)

There exist S and T satisfying :

•
$$h_{\mu}(S) = 0; h_{\mu}(T) > 0;$$

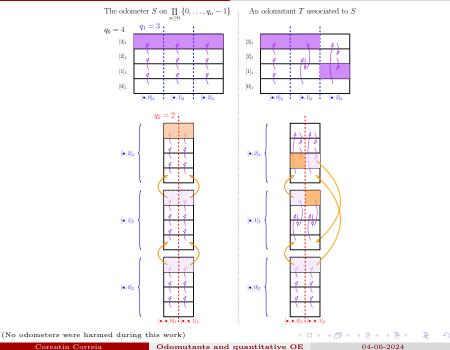
 \bigcirc S and T are \log^{α} -integrably orbit equivalent for all $\alpha < 1$.

 \rightsquigarrow \clubsuit Odomutant T

Odometer S

4/5

• • • • • • • • • • • •



Corentin Correia

Odomutants and quantitative OE

5 / 5