
## Corentin Correia Université Paris Cité

## Main interest: Orbit equivalence

 $(X, \mu)$  standard probability space.

$$T, S \colon X \to X$$
  $\mu$ -preserving bijections satisfying  $\{T^n x \mid n \in \mathbb{Z}\} = \{S^n x \mid n \in \mathbb{Z}\}$ 



Quantitative orbit equivalence: adding restrictions on the distortions  $\rightarrow$  notion of  $\varphi$ -integrable orbit equivalence (the faster  $\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$  goes to  $+\infty$ , the stronger is the restriction)

Theorem (Kerr, Li 2023)

log-integrable orbit equivalence preserves entropy.

Theorem (C. 2025+)

For every  $\alpha < 1$ ,  $\log^{\alpha}$ -integrable orbit equivalence does not preserve entropy.

The counter-examples:

Odometer S



Odomutant T